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Recurrence Relations 1

The proverbial German phenomenon of the verb-at-the-end about which 
droll tales of absentminded professors who would begin a sentence, 
ramble on for an entire lecture, and then finish up by rattling off a string of 
verbs by which their audience, for whom the stack had long since lost its 
coherence, would be totally nonplussed, are told, is an excellent example 
of linguistic recursion.

Douglas Hofstadter

recursion – see recursion.

Mythical definition
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Recurrence Relations 2

A recurrence relation defines a sequence of values by relating the n-th value to r previous 

values.

For example:
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Why do we care? 3

The solutions of many important problems lead to recurrence relations.

For example, let Hn be the number of disks that must be moved in order to solve the 

Towers of Hanoi problem discussed earlier.

There must be an intermediate step must have the n-1 smallest disks on pole 2, and 

only the largest disk on pole 1.

From that step, we can move the largest disk to pole 3, and then follow the same logic 

to move the n-1 smallest disks from pole 2 to pole 3 (atop the largest disk).

So, the number of disk moves must satisfy the recurrence:

But, we would like to have a nonrecursive formula for Hn.
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Solving Recurrence Relations 4

There are many different kinds of recurrence relations, and a number of different solution 

techniques that apply to different kinds of recurrence relations.

Given a homogeneous linear recurrence relation with constant coefficients:

Find the roots of the characteristic polynomial:

If the roots are all distinct, say they are d1, d2, …, dr, then (1) is satisfied by:

We will consider the case of non-distinct roots a bit later.
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Example: Fibonacci 5

Consider the Fibonacci recurrence:

The characteristic polynomial is:
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The roots are easily found by using the Quadratic Formula:
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So, the Fibonacci recurrence would be satisfied by:
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What about the coefficients?
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Example: Fibonacci 6
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We can find the coefficients by applying the base cases:
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Now, we have a pair of (ugly) linear equations, which are easily solved:
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Example: Fibonacci 7

1 1 5 1 1 5
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A bit of algebraic manipulation yields:

It's interesting that yields an integer value for every nonnegative integer n.
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A Theorem 8

Given a linear homogeneous recurrence relation

if the characteristic polynomial

has a root λ of multiplicity m, then the following are all solutions of (1):

and every solution of (1) can be expressed as a sum of constant multiples of all of the 

solutions described above,

and, if we are given r base cases, we can solve for exact values for those constant multiples 

and find a unique solution.

1 1 2 2     (1)n n n n n n r n rA C A C A C A− − − − − −= + + +⋯
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1 2 1 0( ) r r r
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Example 9

Consider the following recurrence: 1 2

0 1
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The characteristic polynomial is:
2 2( ) 4 4 ( 2)P t t t t= − + = −

This has a repeated root, 2.

According to the preceding theorem, the general solution of the recurrence is:

Then, using the base cases above, we can solve for the coefficients and get the specific 

solution:
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A Nonhomogenous Example 10

Consider the Towers of Hanoi recurrence:
1
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This is not homogeneous, because of the nonzero constant on the right side.

In this case, we can transform the nonhomogeneous recurrence by performing a trick:

If we subtract, we get second-order linear homogeneous recurrence:

The characteristic polynomial has roots 1 and 2.
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A Nonhomogeneous Example 11

Using the roots 1 and 2, the general solution would be:

We can use the facts that H1 = 1 and H2 = 3 to solve for c1 and c2, and get the specific 

solution:

(So, if those monks are working with a tower of 64 disks, and moving 1 disk per second, it 

will take them a total of more than 584,942,417,355 years to finish.)

1 2 1 21 2 2n n n
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