
Algorithms

Intro Problem Solving in Computer ScienceCS@VT ©2011-12 McQuain

Algorithms 1

Algorithms are the threads that tie together most of the subfields of

computer science.

Something magically beautiful happens when a sequence of commands

and decisions is able to marshal a collection of data into organized

patterns or to discover hidden structure.

Donald Knuth

Algorithms

Intro Problem Solving in Computer ScienceCS@VT ©2011-12 McQuain

2Definition

algorithm

an effective method expressed as a finite list of well-defined instructions for

calculating a function

effective method (or procedure)

a procedure that reduces the solution of some class of problems to a series of rote steps

which, if followed to the letter, and as far as may be necessary, is bound to:

- always give some answer rather than ever give no answer;

- always give the right answer and never give a wrong answer;

- always be completed in a finite number of steps, rather than in an infinite

number;

- work for all instances of problems of the class.

Algorithms

Intro Problem Solving in Computer ScienceCS@VT ©2011-12 McQuain

Properties of an Algorithm 3

An algorithm must possess the following properties:

finiteness: The algorithm must always terminate after a finite number of steps.

definiteness: Each step must be precisely defined; the actions to be carried out

must be rigorously and unambiguously specified for each case.

input: An algorithm has zero or more inputs, taken from a specified set of

objects.

output: An algorithm has one or more outputs, which have a specified

relation to the inputs.

effectiveness: All operations to be performed must be sufficiently basic that they

can be done exactly and in finite length.

Knuth

Algorithms

Intro Problem Solving in Computer ScienceCS@VT ©2011-12 McQuain

Problems vs Algorithms vs Programs 4

For each problem or class of problems, there may be many different algorithms.

For each algorithm, there may be many different implementations (programs).

. .

. .

. .

p

r

o

b

l

e

m

algorithm 1

algorithm 2

algorithm k

.
.
.

. .

. .

. .

. .

. .

. .

program 1

program 2

program n

Algorithms

Intro Problem Solving in Computer ScienceCS@VT ©2011-12 McQuain

Expressing Algorithms 5

An algorithm may be expressed in a number of ways, including:

natural language: usually verbose and ambiguous

flow charts: avoid most (if not all) issues of ambiguity; difficult to

modify w/o specialized tools; largely standardized

pseudo-code: also avoids most issues of ambiguity; vaguely resembles

common elements of programming languages; no

particular agreement on syntax

programming language: tend to require expressing low-level details that are not

necessary for a high-level understanding

Algorithms

Intro Problem Solving in Computer ScienceCS@VT ©2011-12 McQuain

Common Elements of Algorithms 6

acquire data (input)

some means of reading values from an external source; most algorithms require

data values to define the specific problem (e.g., coefficients of a polynomial)

computation

some means of performing arithmetic computations, comparisons, testing logical

conditions, and so forth...

selection

some means of choosing among two or more possible courses of action, based

upon initial data, user input and/or computed results

iteration

some means of repeatedly executing a collection of instructions, for a fixed

number of times or until some logical condition holds

report results (output)

some means of reporting computed results to the user, or requesting additional

data from the user

Algorithms

Intro Problem Solving in Computer ScienceCS@VT ©2011-12 McQuain

pseudo-Language 7

See the posted notes on pseudo-language notation.

Algorithms

Intro Problem Solving in Computer ScienceCS@VT ©2011-12 McQuain

Simple Example: Area of a Trapezoid 8

algorithm AreaOfTrapezoid takes number Height,
number lowerBase,
number upperBase

Computes the area of a trapezoid.
Pre: input values must be non-negative real numbers.
#

number averageWidth, areaOfTrapezoid

averageWidth := (upperBase + lowerBase) / 2

areaOfTrapezoid := averageWidth * Height

display areaOfTrapezoid
halt

Algorithms

Intro Problem Solving in Computer ScienceCS@VT ©2011-12 McQuain

Simple Example: N Factorial 9

algorithm Factorial takes number N

Computes N! = 1 * 2 * . . . * N-1 * N, for N >= 1
Pre: input value must be a non-negative integer.
#

number nFactorial

nFactorial := 1

while N > 1
nFactorial := nFactorial * N
N := N - 1

endwhile

display nFactorial
halt

Algorithms

Intro Problem Solving in Computer ScienceCS@VT ©2011-12 McQuain

Example: Finding Longest Run 10

algorithm LongestRun takes list number List,
number Sz

Given a list of values, finds the length of the longest sequence
of values that are in strictly increasing order.
Pre: input List must contain Sz elements.
#

number currentPosition # specifies list element currently
being examined

number maxRunLength # stores length of longest run seen
so far

number thisRunLength # stores length of current run

if Sz <= 0 # if list is empty, no runs...
display 0
halt

endif

currentPosition := 1 # start with first element in list
maxRunLength := 1 # it forms a run of length 1
thisRunLength := 1

continues on next slide...

Algorithms

Intro Problem Solving in Computer ScienceCS@VT ©2011-12 McQuain

Example: Finding Longest Run 11

...continued from previous slide

while currentPosition < Sz

if (List[currentPosition] < List[currentPosition + 1])
thisRunLength := thisRunLength + 1

else
if (thisRunLength > maxRunLength)

maxRunLength := thisRunLength
endif
thisRunLength := 1

endif

currentPosition := currentPosition + 1

endwhile

display maxRunLength
halt

QTP: is this algorithm correct?

Algorithms

Intro Problem Solving in Computer ScienceCS@VT ©2011-12 McQuain

Testing Correctness 12

How do we know whether an algorithm is actually correct?

First, the logical analysis of the problem we performed in order to design the algorithm

should give us confidence that we have identified a valid procedure for finding a solution.

Second, we can test the algorithm by choosing different sets of input values, carrying out

the algorithm, and checking to see if the resulting solution does, in fact, work.

BUT… no matter how much testing we do, unless there are only a finite number of

possible input values for the algorithm to consider, testing can never prove that the

algorithm produces correct results in all cases.

Algorithms

Intro Problem Solving in Computer ScienceCS@VT ©2011-12 McQuain

Proving Correctness 13

We can attempt to construct a formal, mathematical proof that, if the algorithm is given

valid input values then the results obtained from the algorithm must be a solution to the

problem.

We should expect that such a proof be provided for every algorithm.

In the absence of such a proof, we should view the purported algorithm as nothing more

than a heuristic procedure, which may or may not yield the expected results.

Algorithms

Intro Problem Solving in Computer ScienceCS@VT ©2011-12 McQuain

Measuring Performance 14

How can we talk precisely about the "cost" of running an algorithm?

What does "cost" mean? Time? Space? Both? Something else?

And, if we settle on one thing to measure, how do we actually obtain a measurement that

makes sense?

This is primarily a topic for a course in algorithms, like CS 3114 or CS 4104.

