Linear Difference Equations of Order One

[e.o]

Given sequences {a, }o>; and {b,}>>,, find a sequence {z,}5%, such that

Ty = ApTp_1+b,, n=12,...; To = C.
For the homogeneous case z,, = a,x,_1, the solution is
Ty, = CTp,

where 7y = 1, 7, = ajay - - - a,. The general (nonhomogeneous) solution is

by b by,
Ty =Tp|lC+—+—+--+—|.
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Linear Constant Coefficient Homogeneous Difference Equations of Order k&

Given constants ay, ..., ag, Cg, ..., Ck—1, find a sequence {z,, }5% such that
Tp =1 Tp_1+ A2Tp_o+ + ApTp_k, N =>k; r;=c¢, 1=0,1,....k—1.
For a sequence X = {x, }22, define the sequence L(X) = {y,}>2, by

Yn = Tp — A1Tp—1 — A2Tp—2 — **° — QpTp—k

and the associated characteristic polynomial

P(r) = F P et - a1 T — ay.

Then
(1) LW)=L(Z)=0= L(aW + BZ) = 0 for any constants o and [3,
(2) for any root t of P(7) = 0, the sequence X defined by x,, = " solves L(X) = 0,

(3) if t is a root of multiplicity » > 1 of P(7) = 0, then z,, = n(n —1)---(n — s+ 1)t"~* solves
L(X)=0for0<s<r—1.

Each simple root t of P(7) = 0 defines a sequence by x,, = t", and each multiple root ¢ defines
multiple sequences according to (3). There are thus exactly k distinct (and independent) sequences
X 1 < i<k, each solving £(X) = 0. By (1), £(Ef:1 oziX(i)) = 0, and solving the linear system
of equations

k .
Z aiXéZ) = Co,
i=1

k

(%)
g o; X, = ck-1,
i—1



for the coefficients «; gives the unique solution

k
i=1

to L(X) = 0 satisfying the initial conditions x; =¢;, i =0, 1, ..., k — 1.

Example. The Fibonacci sequence is defined by
Tp =Tp-1+Tp2, To=x1=1

The linear operator £(X), = z, — ©,-1 — Tp—2 and the roots of the characteristic polynomial

P(r)=72—71—1 are 1i2\/§7 and thus two solutions of £(X) = 0 are

YO _ (ﬂ) Y@ _ <ﬂ>
n 2 Y n 2

The linear system of equations to satisfy the initial conditions is

OélXél) + OéQXéQ) =a1 +ay = 1,

1 ) 1—-+5
Oé1X£1) +042X£2) = ( +2\/_> +az ( 2f> =1,

12“'\/\%5, Qap = — 12_\/\%5 The Fibonacci numbers are therefore given by

N ARV A ATV A
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whose solution is a; =




Special Numbers

1 1 1
Fuler’s constant v = lim (1 +-4+=-+---+——In n> = 0.57721 56649 01532 86060 . . .
n

n—o0o 2 3

[ee]
Euler’s gamma function I'(z) = / t*~te7tdt, where Rz > 0. T'(1) = 1, T'(n + 1) = n! for
0

nonnegative integers n, and in general I'(z + 1) = 2I'(2).

nPr = is the number of permutations of n objects taken r at a time.

n!
——— defined for integers n > r > 0, is the number of
rl(n—r)!

combinations of n objects taken r at a time. More generally,

1) (n — 1
<"> _ { n(n—1) '(n dins ), integer r > 0,
r

r

The binomial coefficient <Z> =

0, ' integer r < 0,

is defined for real or complex n and integer r, and satisfies the Pascal triangle recurrence

G-+ ()

By convention, (3) =1.

The Stirling number of the second kind {n} is the number of partitions of a set of n objects into

n n
r nonempty subsets. By convention, { } =1 for integer n > 0, and { } = 0 for integers n > 0,
n r

r < 0. The recurrence relation is

The Stirling number of the first kind [n] is the number of wreath arrangements of a set of n objects
r

into r nonempty wreaths (or, equivalently, the number of permutations of a set of n objects that
can be written as the product of r cycles). For integers n > 0 and r, some identities are

D=0r=n L= 06)
R

n
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Difference Calculus

Difference calculus is the discrete analog of Newton’s continuous calculus. For a function f(z),
some basic difference operators are

Af(xz) = f(x+1) — f(x) (forward difference),
Vf(z)= f(z) — f(x — 1) (backward difference),
df(x) = f(x+1/2) — f(x — 1/2) (central difference),

wf(z) = (f(z+1/2) + f(z —1/2)) /2 (averaging operator).

F=a@ 1) (z+ k1), =g —-1)--(z—k+1), Axh = fak=L,

k

xF is read as “xF

ascending” and z% is read as “z* descending”. Using the fact that {7} =[] =0
for integers n > 0 and k < 0, relationships between z™, 2, and z” for integer n > 0 are

IS Sl
" = Ek: [Z} zk, = Z [Z} (—1)"Fak, o = (=1)"(—2)".

Fundamental Theorem of Difference Calculus. Let a < b be integers, and f, F' be functions
such that f(z) = AF(x). Then

S J(k) = F(b) - Fla)

a<k<b

Example. Find a formula for >_;_, k3. Take

4 2
flz)=2" =22+ 322+ 21 and F(z) = %+x§+%

for which AF(z) = f(z). Then by the fundamental theorem,

k= > f(k)=F(n+1)-F()

k=0 0<k<n+1
_ (n+ 1)n(n4— 1)(n—2) + (4 D —1) +

n?(n + 1)2

—

(n+1)n
2




Probability and Statistics

A random variable is a function X : A — B defined on a set A of outcomes. e.g., A = {heads,
tails}, B ={0,1}, X (heads) = 1, X (tails) = 0. Subsets of A are called events. Associated with an
event R C A is a real number P(R), 0 < P(R) < 1, called the probability of R, which measures
the likelihood of any outcome in R occurring. A probability measure P satisfies

(1) P(®) =0,
(2) P(4) =1,
(3) P(RUS) = P(R)+ P(S) for any two disjoint (RN S = )) subsets R, S of A.

Example. A = {5-card poker hands}, R = {hands containing a king}, S = {hands with no face
cards}. Then RN S =), and P(RUS) = P(R) + P(S).

The events R and S are independent if P(RNS) = P(R)P(S).
For a discrete random variable X (the set B is a discrete set, e.g., B = {0, 1, 2, 3, ...}), the
probability that X = x is
P(X =xz)=P({0| X(0) =z}) =px ().

The function px is called the probability mass function (pmf) of X.

Example. Let P({head}) = p, A = {sequences of n coin flip outcomes}, B={0,1,...,n}, 0 € A,
X (0) = number of heads in §. Then

X is said to have a binomial distribution.

X : A — B is a continuous random variable if A and B are not discrete sets, e.g., A =B =
R = {real numbers}. In this case probabilities are given by integrals:

Pla<X <b)=P({0]a<X(0)<b)) :/bf(s)ds,
where f(s) > 0 is called the probability density function (pdf) for X. The function
Fz)=P(X <z)= /I f(s)ds
is called the cumulative distribution function (cdf) for X; note that F’'(z) = f(z).

Some standard continuous probability distributions with their notation and density function
are listed below.

Distribution Notation pdf f(z) Parameters
1
uniform Ul(a,b) 2 a<x<b
—a
1
normal N(u,o?) e~ (@=m)?*/20° —oco<x <00, 0>0

oV 2T
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)\axa—le—kx

gamma GAM (M, «) o) x>0, 0, A>0

r-stage Erlang GAM(\, 1) r=1,2,3,...
exponential EXP(\) e e x>0, A>0

hypoexponential HY PO(Aqy,...,\,) Zai)\ie”‘ix x>0, \; >0Vi

i=1
w—n A Ai # A fori #j
i — 11 /\j — )\Z % J J
i
Dla+B) o -1
beta BETA(o, B — (1 — )P 0<z<1, a,B8>0
@D e

Define a binary random variable Y;(success) = 1, Y;(failure) = 0 for trial i. If the Y; are
independent and P(Y; = 1) = p Vi, then the Y; /trials are called Bernoulli random variables/trials.
Each trial may have ¢ different outcomes, with probabilities pq, ..., p.. Some common discrete
probability distributions follow.

Distribution pmf px(r) Parameters
n
binomial < >p’”(1 —p)"™"  r successes in n trials
r
n' (& (&
. . ! v _ . _ s
multinomial B Hpi r = (ry,ra,...,Te) outcomes in n = Z r; trials
i=1 i=1
geometric (1—p)'p r trials up to and including first success
e Fu”
Poisson H uw>0,r=0,1,2,...

7!

The ezpected value (or mean) E[X] of a discrete random variable X with pmf px (x) is defined
by

EX] = Z zpx(z),

zEB
and for a continuous random variable X with pdf f(s) by

BIX] = /w sf(s)ds.

— 00
In general, the expected value of any function g(X) of a random variable X is

Elg(X)] = 3 g(x) px (x) or B[X] = / o(s)f(s) ds.

z€B -

The variance of X is Var[X] = E[(X — E[X ])2] The mean and variance are often denoted by p
and o2, respectively. o is called the standard deviation.

Theorem. For any two random variables X and Y, E[X + Y] = E[X] + E[Y].

6



Theorem. If X and Y are independent random variables, then

EXY|=FE[X]E]Y] and Var[X+Y]|=VarX|+ Var[Y].

Example. For a Bernoulli variable Y;, E[Y;] =1-p+0-(1 —p) = p, Var[Y;] = E[(Y; — p)?] =
E[Y?] - (BE[Y:)? =p—p*=p(1-p).

Example. For an n-trial binomial variable X =Yy +---+Y,, E[X|=F

=1

Example. X with a geometric distribution has E[X] = 1/p and Var[X] = (1 —p)/p*.

i=1

= iE[E] =np

and Var[X] = Var

= Z VarlY;] = np(1 - p).

Example. For a Poisson variable X with parameter p, E[X]| = Var[X] = pu.

Example. A uniform distribution X over a < x < b has E[X] = (a +b)/2 and Var[X] =
(b—a)?/12.
2

Example. An N(u,0?) normal random variable has mean p and variance o2.
Example. A GAM (), «) random variable has mean /) and variance a/\2.

Markov Inequality. Let X be a nonnegative random variable with finite mean F[X] = u. Then
for any ¢ > 0,

P(X >t) <

| =

Chebyshev Inequality. Let X be a random variable with finite mean p and variance o2. Then

for any t > 0,
2

P(X —ul 2 )< %

Consider a population described by a distribution (with mean p and variance o?), where
a value X (0) = x of the random variable X corresponds to sampling one individual from the
population. A sample z1, ..., z,, from the population can be viewed as values of n independent
identically distributed random variables X1, ..., X,,. A statistic is a number derived from a sample
or population, and the fundamental question is how sample statistics relate to population statistics.

The sample mean T and sample variance s®> = % are

I 2 1 -2
T=—— s—n_lz;(xi—x).
1=

These are called unbiased estimators, since E[Z] = p and E[s?] = o2. Observe that if s were

defined with 1/n instead of 1/(n — 1), then E[s?] # o2. Applying Chebyshev’s inequality gives

_ o2
P-4l 1) < 2.



Let S be an event space (set of outcomes), let A, B C S be events, and let the events B;, Bo,
..., By, C S partition S, i.e., S = U, B; and B; N B; = () for i # j. The conditional probability of
event B, given that event A has already occurred, is defined by

P(ANB)

P(B|A):W,

P(A) > 0.

For P(A) > 0, Bayes Theorem states that for each k=1, ..., n,

P(A| Bi) P(Bx)

P(By [ 4) =

: S (] 2) P()



