
Linear Difference Equations of Order One

Given sequences {an}∞n=1 and {bn}∞n=1, find a sequence {xn}∞n=0 such that

xn = anxn−1 + bn, n = 1, 2, . . . ; x0 = c.

For the homogeneous case xn = anxn−1, the solution is

xn = cπn,

where π0 = 1, πn = a1a2 · · · an. The general (nonhomogeneous) solution is

xn = πn

(

c+
b1
π1

+
b2
π2

+ · · · + bn
πn

)

.

Linear Constant Coefficient Homogeneous Difference Equations of Order k

Given constants a1, . . ., ak, c0, . . ., ck−1, find a sequence {xn}∞n=0 such that

xn = a1xn−1 + a2xn−2 + · · ·+ akxn−k, n ≥ k; xi = ci, i = 0, 1, . . . , k − 1.

For a sequence X = {xn}∞n=0, define the sequence L(X) = {yn}∞n=k by

yn = xn − a1xn−1 − a2xn−2 − · · · − akxn−k

and the associated characteristic polynomial

P (τ) = τk − a1τ
k−1 − a2τ

k−2 − · · · − ak−1τ − ak.

Then

(1) L(W ) = L(Z) = 0 =⇒ L(αW + βZ) = 0 for any constants α and β,

(2) for any root t of P (τ) = 0, the sequence X defined by xn = tn solves L(X) = 0,

(3) if t is a root of multiplicity r > 1 of P (τ) = 0, then xn = n(n − 1) · · · (n − s + 1)tn−s solves

L(X) = 0 for 0 ≤ s ≤ r − 1.

Each simple root t of P (τ) = 0 defines a sequence by xn = tn, and each multiple root t defines

multiple sequences according to (3). There are thus exactly k distinct (and independent) sequences

X(i), 1 ≤ i ≤ k, each solving L(X) = 0. By (1), L
(
∑k

i=1 αiX
(i)
)

= 0, and solving the linear system

of equations
k
∑

i=1

αiX
(i)
0 = c0,

...

k
∑

i=1

αiX
(i)
k−1 = ck−1,

1



for the coefficients αi gives the unique solution

k
∑

i=1

αiX
(i)

to L(X) = 0 satisfying the initial conditions xi = ci, i = 0, 1, . . ., k − 1.

Example. The Fibonacci sequence is defined by

xn = xn−1 + xn−2, x0 = x1 = 1.

The linear operator L(X)n = xn − xn−1 − xn−2 and the roots of the characteristic polynomial

P (τ) = τ2 − τ − 1 are 1±
√
5

2 , and thus two solutions of L(X) = 0 are

X(1)
n =

(

1 +
√
5

2

)n

, X(2)
n =

(

1−
√
5

2

)n

.

The linear system of equations to satisfy the initial conditions is

α1X
(1)
0 + α2X

(2)
0 = α1 + α2 = 1,

α1X
(1)
1 + α2X

(2)
1 = α1

(

1 +
√
5

2

)

+ α2

(

1−
√
5

2

)

= 1,

whose solution is α1 = 1+
√
5

2
√
5
, α2 = − 1−

√
5

2
√
5
. The Fibonacci numbers are therefore given by

xn =
1√
5





(

1 +
√
5

2

)n+1

−
(

1−
√
5

2

)n+1


 .
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Special Numbers

Euler’s constant γ = lim
n→∞

(

1 +
1

2
+

1

3
+ · · · + 1

n
− lnn

)

= 0.57721 56649 01532 86060 . . .

Euler’s gamma function Γ(z) =

∫ ∞

0

tz−1e−t dt, where ℜz > 0. Γ(1) = 1, Γ(n + 1) = n! for

nonnegative integers n, and in general Γ(z + 1) = zΓ(z).

nPr =
n!

(n− r)!
is the number of permutations of n objects taken r at a time.

The binomial coefficient

(

n

r

)

=
n!

r!(n− r)!
, defined for integers n ≥ r ≥ 0, is the number of

combinations of n objects taken r at a time. More generally,

(

n

r

)

=

{

n(n− 1) · · · (n− r + 1)

r!
, integer r ≥ 0,

0, integer r < 0,

is defined for real or complex n and integer r, and satisfies the Pascal triangle recurrence

(

n+ 1

r + 1

)

=

(

n

r

)

+

(

n

r + 1

)

.

By convention,
(

n
0

)

= 1.

The Stirling number of the second kind
{n

r

}

is the number of partitions of a set of n objects into

r nonempty subsets. By convention,
{n

n

}

= 1 for integer n ≥ 0, and
{n

r

}

= 0 for integers n > 0,

r ≤ 0. The recurrence relation is

{

n+ 1

r

}

= r
{n

r

}

+

{

n

r − 1

}

.

The Stirling number of the first kind
[n

r

]

is the number of wreath arrangements of a set of n objects

into r nonempty wreaths (or, equivalently, the number of permutations of a set of n objects that

can be written as the product of r cycles). For integers n ≥ 0 and r, some identities are

[n

n

]

=
{n

n

}

= 1,

[

n

n− 1

]

=

{

n

n− 1

}

=

(

n

2

)

,

[

n+ 1

1

]

= n!,

n
∑

r=0

[n

r

]

= n!,

[

n+ 1

r

]

= n
[n

r

]

+

[

n

r − 1

]

.
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Difference Calculus

Difference calculus is the discrete analog of Newton’s continuous calculus. For a function f(x),

some basic difference operators are

∆f(x) = f(x+ 1)− f(x) (forward difference),

∇f(x) = f(x)− f(x− 1) (backward difference),

δf(x) = f(x+ 1/2) − f(x− 1/2) (central difference),

µf(x) =
(

f(x+ 1/2) + f(x− 1/2)
)/

2 (averaging operator).

xk = x(x+ 1) · · · (x+ k − 1), xk = x(x− 1) · · · (x− k + 1), ∆xk = kxk−1.

xk is read as “xk ascending” and xk is read as “xk descending”. Using the fact that {n
k } = [nk ] = 0

for integers n ≥ 0 and k < 0, relationships between xn, xn, and xn for integer n ≥ 0 are

xn =
∑

k

{n

k

}

xk =
∑

k

{n

k

}

(−1)n−kxk,

xn =
∑

k

[n

k

]

xk, xn =
∑

k

[n

k

]

(−1)n−kxk, xn = (−1)n(−x)n.

Fundamental Theorem of Difference Calculus. Let a < b be integers, and f , F be functions

such that f(x) = ∆F (x). Then
∑

a≤k<b

f(k) = F (b)− F (a)

.

Example. Find a formula for
∑n

k=0 k
3. Take

f(x) = x3 = x3 + 3x2 + x1 and F (x) =
x4

4
+ x3 +

x2

2

for which ∆F (x) = f(x). Then by the fundamental theorem,

n
∑

k=0

k3 =
∑

0≤k<n+1

f(k) = F (n+ 1)− F (0)

=
(n+ 1)n(n − 1)(n− 2)

4
+ (n+ 1)n(n − 1) +

(n + 1)n

2

=
n2(n + 1)2

4
.
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Probability and Statistics

A random variable is a function X : A → B defined on a set A of outcomes. e.g., A = {heads,
tails}, B = {0, 1}, X(heads) = 1, X(tails) = 0. Subsets of A are called events. Associated with an

event R ⊂ A is a real number P (R), 0 ≤ P (R) ≤ 1, called the probability of R, which measures

the likelihood of any outcome in R occurring. A probability measure P satisfies

(1) P (∅) = 0,

(2) P (A) = 1,

(3) P (R ∪ S) = P (R) + P (S) for any two disjoint (R ∩ S = ∅) subsets R, S of A.

Example. A = {5-card poker hands}, R = {hands containing a king}, S = {hands with no face

cards}. Then R ∩ S = ∅, and P (R ∪ S) = P (R) + P (S).

The events R and S are independent if P (R ∩ S) = P (R)P (S).

For a discrete random variable X (the set B is a discrete set, e.g., B = {0, 1, 2, 3, . . .}), the
probability that X = x is

P (X = x) = P
(

{θ | X(θ) = x}
)

= pX(x).

The function pX is called the probability mass function (pmf) of X.

Example. Let P ({head}) = p, A = {sequences of n coin flip outcomes}, B = {0, 1, . . ., n}, θ ∈ A,

X(θ) = number of heads in θ. Then

P (X = r) =

(

n

r

)

pr(1− p)n−r;

X is said to have a binomial distribution.

X : A → B is a continuous random variable if A and B are not discrete sets, e.g., A = B =

R = {real numbers}. In this case probabilities are given by integrals:

P (a ≤ X ≤ b) = P
(

{θ | a ≤ X(θ) ≤ b}
)

=

∫ b

a

f(s) ds,

where f(s) ≥ 0 is called the probability density function (pdf) for X. The function

F (x) = P (X ≤ x) =

∫ x

−∞
f(s) ds

is called the cumulative distribution function (cdf) for X; note that F ′(x) = f(x).

Some standard continuous probability distributions with their notation and density function

are listed below.

Distribution Notation pdf f(x) Parameters

uniform U(a, b)
1

b− a
a ≤ x ≤ b

normal N(µ, σ2)
1

σ
√
2π

e−(x−µ)2/2σ2 −∞ < x < ∞, σ > 0
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gamma GAM(λ, α)
λαxα−1e−λx

Γ(α)
x > 0, α, λ > 0

r-stage Erlang GAM(λ, r) r = 1, 2, 3, . . .

exponential EXP (λ) λe−λx x > 0, λ > 0

hypoexponential HY PO(λ1, . . . , λn)

n
∑

i=1

aiλie
−λix x > 0, λi > 0 ∀i

ai =

n
∏

j=1

j 6=i

λj

λj − λi
λi 6= λj for i 6= j

beta BETA(α, β)
Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1 0 ≤ x ≤ 1, α, β > 0

Define a binary random variable Yi(success) = 1, Yi(failure) = 0 for trial i. If the Yi are

independent and P (Yi = 1) = p ∀i, then the Yi/trials are called Bernoulli random variables/trials.

Each trial may have c different outcomes, with probabilities p1, . . ., pc. Some common discrete

probability distributions follow.

Distribution pmf pX(r) Parameters

binomial

(

n

r

)

pr(1− p)n−r r successes in n trials

multinomial
n!

r1!r2! · · · rc!

c
∏

i=1

prii r = (r1, r2, . . . , rc) outcomes in n =
c
∑

i=1

ri trials

geometric (1− p)r−1p r trials up to and including first success

Poisson
e−µµr

r!
µ > 0, r = 0, 1, 2, . . .

The expected value (or mean) E[X] of a discrete random variable X with pmf pX(x) is defined

by

E[X] =
∑

x∈B

x pX(x),

and for a continuous random variable X with pdf f(s) by

E[X] =

∫ ∞

−∞
sf(s) ds.

In general, the expected value of any function g(X) of a random variable X is

E[g(X)] =
∑

x∈B

g(x) pX (x) or E[X] =

∫ ∞

−∞
g(s)f(s) ds.

The variance of X is V ar[X] = E
[(

X −E[X]
)2]

. The mean and variance are often denoted by µ

and σ2, respectively. σ is called the standard deviation.

Theorem. For any two random variables X and Y , E[X + Y ] = E[X] + E[Y ].
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Theorem. If X and Y are independent random variables, then

E[XY ] = E[X]E[Y ] and V ar[X + Y ] = V ar[X] + V ar[Y ].

Example. For a Bernoulli variable Yi, E[Yi] = 1 · p + 0 · (1 − p) = p, V ar[Yi] = E[(Yi − p)2] =

E[Y 2
i ]− (E[Yi])

2 = p− p2 = p(1− p).

Example. For an n-trial binomial variable X = Y1+· · ·+Yn, E[X] = E

[

n
∑

i=1

Yi

]

=
n
∑

i=1

E[Yi] = np

and V ar[X] = V ar

[

n
∑

i=1

Yi

]

=

n
∑

i=1

V ar[Yi] = np(1− p).

Example. X with a geometric distribution has E[X] = 1/p and V ar[X] = (1− p)/p2.

Example. For a Poisson variable X with parameter µ, E[X] = V ar[X] = µ.

Example. A uniform distribution X over a ≤ x ≤ b has E[X] = (a + b)/2 and V ar[X] =

(b− a)2/12.

Example. An N(µ, σ2) normal random variable has mean µ and variance σ2.

Example. A GAM(λ, α) random variable has mean α/λ and variance α/λ2.

Markov Inequality. Let X be a nonnegative random variable with finite mean E[X] = µ. Then

for any t > 0,

P (X ≥ t) ≤ µ

t
.

Chebyshev Inequality. Let X be a random variable with finite mean µ and variance σ2. Then

for any t > 0,

P
(

|X − µ| ≥ t
)

≤ σ2

t2
.

Consider a population described by a distribution (with mean µ and variance σ2), where

a value X(θ) = x of the random variable X corresponds to sampling one individual from the

population. A sample x1, . . ., xn from the population can be viewed as values of n independent

identically distributed random variables X1, . . ., Xn. A statistic is a number derived from a sample

or population, and the fundamental question is how sample statistics relate to population statistics.

The sample mean x̄ and sample variance s2 = σ̄2 are

x̄ =
x1 + · · ·+ xn

n
, s2 =

1

n− 1

n
∑

i=1

(xi − x̄)2.

These are called unbiased estimators, since E[x̄] = µ and E[s2] = σ2. Observe that if s2 were

defined with 1/n instead of 1/(n − 1), then E[s2] 6= σ2. Applying Chebyshev’s inequality gives

P
(

|x̄− µ| ≥ t
)

≤ σ2

nt2
.
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Let S be an event space (set of outcomes), let A,B ⊂ S be events, and let the events B1, B2,

. . ., Bn ⊂ S partition S, i.e., S = ∪n
i=1Bi and Bi ∩Bj = ∅ for i 6= j. The conditional probability of

event B, given that event A has already occurred, is defined by

P (B | A) = P (A ∩B)

P (A)
, P (A) > 0.

For P (A) > 0, Bayes Theorem states that for each k = 1, . . ., n,

P
(

Bk

∣

∣ A
)

=
P
(

A
∣

∣ Bk

)

P
(

Bk

)

n
∑

i=1

P
(

A
∣

∣ Bi

)

P
(

Bi

)

.
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