Linear Difference Equations of Order One

Given sequences ${a_n}_{n=1}^{\infty}$ and ${b_n}_{n=1}^{\infty}$, find a sequence ${x_n}_{n=0}^{\infty}$ such that

$$
x_n = a_n x_{n-1} + b_n
$$
, $n = 1, 2, ...$; $x_0 = c$.

For the homogeneous case $x_n = a_n x_{n-1}$, the solution is

$$
x_n = c\pi_n,
$$

where $\pi_0 = 1$, $\pi_n = a_1 a_2 \cdots a_n$. The general (nonhomogeneous) solution is

$$
x_n = \pi_n \left(c + \frac{b_1}{\pi_1} + \frac{b_2}{\pi_2} + \dots + \frac{b_n}{\pi_n} \right).
$$

Linear Constant Coefficient Homogeneous Difference Equations of Order k

Given constants $a_1, \ldots, a_k, c_0, \ldots, c_{k-1}$, find a sequence $\{x_n\}_{n=0}^{\infty}$ such that

$$
x_n = a_1 x_{n-1} + a_2 x_{n-2} + \dots + a_k x_{n-k}, \quad n \ge k; \qquad x_i = c_i, \ i = 0, 1, \dots, k-1.
$$

For a sequence $X = \{x_n\}_{n=0}^{\infty}$, define the sequence $\mathcal{L}(X) = \{y_n\}_{n=k}^{\infty}$ by

$$
y_n = x_n - a_1 x_{n-1} - a_2 x_{n-2} - \dots - a_k x_{n-k}
$$

and the associated characteristic polynomial

$$
P(\tau) = \tau^{k} - a_1 \tau^{k-1} - a_2 \tau^{k-2} - \dots - a_{k-1} \tau - a_k.
$$

Then

- (1) $\mathcal{L}(W) = \mathcal{L}(Z) = 0 \Longrightarrow \mathcal{L}(\alpha W + \beta Z) = 0$ for any constants α and β ,
- (2) for any root t of $P(\tau) = 0$, the sequence X defined by $x_n = t^n$ solves $\mathcal{L}(X) = 0$,
- (3) if t is a root of multiplicity $r > 1$ of $P(\tau) = 0$, then $x_n = n(n-1)\cdots(n-s+1)t^{n-s}$ solves $\mathcal{L}(X) = 0$ for $0 \leq s \leq r-1$.

Each simple root t of $P(\tau) = 0$ defines a sequence by $x_n = t^n$, and each multiple root t defines multiple sequences according to (3) . There are thus exactly k distinct (and *independent*) sequences $X^{(i)}$, $1 \le i \le k$, each solving $\mathcal{L}(X) = 0$. By (1), $\mathcal{L}\left(\sum_{i=1}^k \alpha_i X^{(i)}\right) = 0$, and solving the linear system of equations

$$
\sum_{i=1}^{k} \alpha_i X_0^{(i)} = c_0,
$$

$$
\vdots
$$

$$
\sum_{i=1}^{k} \alpha_i X_{k-1}^{(i)} = c_{k-1},
$$

for the coefficients α_i gives the unique solution

$$
\sum_{i=1}^k \alpha_i X^{(i)}
$$

to $\mathcal{L}(X) = 0$ satisfying the initial conditions $x_i = c_i, i = 0, 1, ..., k - 1$.

Example. The Fibonacci sequence is defined by

$$
x_n = x_{n-1} + x_{n-2}, \quad x_0 = x_1 = 1.
$$

The linear operator $\mathcal{L}(X)_{n} = x_{n} - x_{n-1} - x_{n-2}$ and the roots of the characteristic polynomial $P(\tau) = \tau^2 - \tau - 1$ are $\frac{1 \pm \sqrt{5}}{2}$ $\frac{2 \times 5}{2}$, and thus two solutions of $\mathcal{L}(X) = 0$ are

$$
X_n^{(1)} = \left(\frac{1+\sqrt{5}}{2}\right)^n, \qquad X_n^{(2)} = \left(\frac{1-\sqrt{5}}{2}\right)^n.
$$

The linear system of equations to satisfy the initial conditions is

$$
\alpha_1 X_0^{(1)} + \alpha_2 X_0^{(2)} = \alpha_1 + \alpha_2 = 1,
$$

$$
\alpha_1 X_1^{(1)} + \alpha_2 X_1^{(2)} = \alpha_1 \left(\frac{1 + \sqrt{5}}{2}\right) + \alpha_2 \left(\frac{1 - \sqrt{5}}{2}\right) = 1,
$$

whose solution is $\alpha_1 = \frac{1+\sqrt{5}}{2\sqrt{5}}$ $\frac{+\sqrt{5}}{2\sqrt{5}}$, $\alpha_2 = -\frac{1-\sqrt{5}}{2\sqrt{5}}$ $\frac{-\sqrt{5}}{2\sqrt{5}}$. The Fibonacci numbers are therefore given by

$$
x_n = \frac{1}{\sqrt{5}} \left(\left(\frac{1+\sqrt{5}}{2} \right)^{n+1} - \left(\frac{1-\sqrt{5}}{2} \right)^{n+1} \right).
$$

Special Numbers

Euler's constant $\gamma = \lim_{n \to \infty} \left(1 + \frac{1}{2} \right)$ $\frac{1}{2} + \frac{1}{3}$ $\frac{1}{3} + \cdots + \frac{1}{n}$ $\left(\frac{1}{n} - \ln n\right) = 0.57721\,56649\,01532\,86060\ldots$

Euler's gamma function $\Gamma(z) = \int_{-\infty}^{\infty}$ 0 $t^{z-1}e^{-t} dt$, where $\Re z > 0$. $\Gamma(1) = 1$, $\Gamma(n+1) = n!$ for nonnegative integers *n*, and in general $\Gamma(z+1) = z\Gamma(z)$.

 ${}_{n}P_{r} = \frac{n!}{(n-r)!}$ is the number of permutations of n objects taken r at a time.

The binomial coefficient $\binom{n}{k}$ r $\left(\begin{array}{c} n! \\ \hline r!(n-r)! \end{array} \right) = \frac{n!}{r!(n-r)!}$, defined for integers $n \geq r \geq 0$, is the number of combinations of n objects taken r at a time. More generally,

$$
\binom{n}{r} = \begin{cases} \frac{n(n-1)\cdots(n-r+1)}{r!}, & \text{integer } r \ge 0, \\ 0, & \text{integer } r < 0, \end{cases}
$$

is defined for real or complex n and integer r , and satisfies the Pascal triangle recurrence

$$
\binom{n+1}{r+1} = \binom{n}{r} + \binom{n}{r+1}.
$$

By convention, $\binom{n}{0}$ $\binom{n}{0} = 1.$

The Stirling number of the second kind $\begin{Bmatrix} n \\ r \end{Bmatrix}$ is the number of partitions of a set of n objects into r nonempty subsets. By convention, $\begin{cases} n \\ n \end{cases}$ $= 1$ for integer $n \geq 0$, and $\begin{cases} n \\ r \end{cases}$ $= 0$ for integers $n > 0$, $r \leq 0$. The recurrence relation is

$$
\begin{Bmatrix} n+1 \\ r \end{Bmatrix} = r \begin{Bmatrix} n \\ r \end{Bmatrix} + \begin{Bmatrix} n \\ r-1 \end{Bmatrix}.
$$

The Stirling number of the first kind $\left[n \atop r \right]$ is the number of wreath arrangements of a set of n objects into r nonempty wreaths (or, equivalently, the number of permutations of a set of n objects that can be written as the product of r cycles). For integers $n \geq 0$ and r, some identities are

$$
\begin{bmatrix} n \\ n \end{bmatrix} = \begin{Bmatrix} n \\ n \end{Bmatrix} = 1, \qquad \begin{bmatrix} n \\ n-1 \end{bmatrix} = \begin{Bmatrix} n \\ n-1 \end{Bmatrix} = \begin{Bmatrix} n \\ 2 \end{Bmatrix}, \qquad \begin{bmatrix} n+1 \\ 1 \end{bmatrix} = n!, \qquad \sum_{r=0}^{n} \begin{bmatrix} n \\ r \end{bmatrix} = n!,
$$

$$
\begin{bmatrix} n+1 \\ r \end{bmatrix} = n \begin{bmatrix} n \\ r \end{bmatrix} + \begin{bmatrix} n \\ r-1 \end{bmatrix}.
$$

Difference Calculus

Difference calculus is the discrete analog of Newton's continuous calculus. For a function $f(x)$, some basic difference operators are

 $\Delta f(x) = f(x+1) - f(x)$ (forward difference), $\nabla f(x) = f(x) - f(x-1)$ (backward difference), $\delta f(x) = f(x + 1/2) - f(x - 1/2)$ (central difference), $\mu f(x) = (f(x + 1/2) + f(x - 1/2))/2$ (averaging operator).

$$
x^{\overline{k}} = x(x+1)\cdots(x+k-1),
$$
 $x^{\underline{k}} = x(x-1)\cdots(x-k+1),$ $\Delta x^{\underline{k}} = kx^{\underline{k-1}}.$

 $x^{\overline{k}}$ is read as " x^k ascending" and $x^{\underline{k}}$ is read as " x^k descending". Using the fact that $\{n_k\}$ $\begin{bmatrix} n \\ k \end{bmatrix} = \begin{bmatrix} n \\ k \end{bmatrix} = 0$ for integers $n \geq 0$ and $k < 0$, relationships between x^n , x^n , and $x^{\overline{n}}$ for integer $n \geq 0$ are

$$
x^n = \sum_k \begin{Bmatrix} n \\ k \end{Bmatrix} x^{\underline{k}} = \sum_k \begin{Bmatrix} n \\ k \end{Bmatrix} (-1)^{n-k} x^{\overline{k}},
$$

$$
x^{\overline{n}} = \sum_k \begin{bmatrix} n \\ k \end{bmatrix} x^k, \qquad x^{\underline{n}} = \sum_k \begin{bmatrix} n \\ k \end{bmatrix} (-1)^{n-k} x^k, \qquad x^{\underline{n}} = (-1)^n (-x)^{\overline{n}}.
$$

Fundamental Theorem of Difference Calculus. Let $a < b$ be integers, and f , F be functions such that $f(x) = \Delta F(x)$. Then

$$
\sum_{a \le k < b} f(k) = F(b) - F(a)
$$

Example. Find a formula for $\sum_{k=0}^{n} k^3$. Take

.

$$
f(x) = x3 = x3 + 3x2 + x1
$$
 and $F(x) = \frac{x4}{4} + x3 + \frac{x2}{2}$

for which $\Delta F(x) = f(x)$. Then by the fundamental theorem,

$$
\sum_{k=0}^{n} k^{3} = \sum_{0 \le k < n+1} f(k) = F(n+1) - F(0)
$$
\n
$$
= \frac{(n+1)n(n-1)(n-2)}{4} + (n+1)n(n-1) + \frac{(n+1)n}{2}
$$
\n
$$
= \frac{n^{2}(n+1)^{2}}{4}.
$$

Probability and Statistics

A random variable is a function $X : A \to B$ defined on a set A of outcomes. e.g., $A = \{\text{heads}, \}$ tails}, $B = \{0, 1\}$, $X(\text{heads}) = 1$, $X(\text{tails}) = 0$. Subsets of A are called *events*. Associated with an event $R \subset A$ is a real number $P(R)$, $0 \leq P(R) \leq 1$, called the *probability* of R, which measures the likelihood of any outcome in R occurring. A probability measure P satisfies

- (1) $P(\emptyset) = 0$,
- (2) $P(A) = 1$,
- (3) $P(R \cup S) = P(R) + P(S)$ for any two disjoint $(R \cap S = \emptyset)$ subsets R, S of A.

Example. $A = \{5\text{-card poker hands}\}, R = \{\text{hands containing a king}\}, S = \{\text{hands with no face}\}$ cards}. Then $R \cap S = \emptyset$, and $P(R \cup S) = P(R) + P(S)$.

The events R and S are independent if $P(R \cap S) = P(R)P(S)$.

For a *discrete* random variable X (the set B is a discrete set, e.g., $B = \{0, 1, 2, 3, ...\}$), the probability that $X = x$ is

$$
P(X = x) = P(\{\theta \mid X(\theta) = x\}) = p_X(x).
$$

The function p_X is called the *probability mass function* (pmf) of X.

Example. Let $P({\text{head}}) = p$, $A = {\text{sequences of } n \text{ coin flip outcomes}}, B = \{0, 1, ..., n\}, \theta \in A$, $X(\theta)$ = number of heads in θ . Then

$$
P(X=r) = \binom{n}{r} p^r (1-p)^{n-r};
$$

X is said to have a binomial distribution.

 $X : A \to B$ is a *continuous* random variable if A and B are not discrete sets, e.g., $A = B =$ $\mathbf{R} = \{$ real numbers $\}$. In this case probabilities are given by integrals:

$$
P(a \le X \le b) = P(\{\theta \mid a \le X(\theta) \le b\}) = \int_a^b f(s) \, ds,
$$

where $f(s) \geq 0$ is called the *probability density function* (pdf) for X. The function

$$
F(x) = P(X \le x) = \int_{-\infty}^{x} f(s) \, ds
$$

is called the *cumulative distribution function* (cdf) for X; note that $F'(x) = f(x)$.

Some standard continuous probability distributions with their notation and density function are listed below.

gamma
\ngamma
$$
GAM(\lambda, \alpha)
$$
 $\frac{\lambda^{\alpha} x^{\alpha - 1} e^{-\lambda x}}{\Gamma(\alpha)}$ $x > 0, \alpha, \lambda > 0$
\nr-stage Erlang $GAM(\lambda, r)$ $r = 1, 2, 3, ...$
\nexponential $EXP(\lambda)$ $\lambda e^{-\lambda x}$ $x > 0, \lambda > 0$
\nhypoexponential $HYPO(\lambda_1, ..., \lambda_n)$ $\sum_{i=1}^{n} a_i \lambda_i e^{-\lambda_i x}$ $x > 0, \lambda_i > 0 \forall i$
\n $a_i = \prod_{\substack{j=1 \ j \neq i}}^{n} \frac{\lambda_j}{\lambda_j - \lambda_i}$ $\lambda_i \neq \lambda_j$ for $i \neq j$
\nbeta $BETA(\alpha, \beta)$ $\frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha - 1} (1 - x)^{\beta - 1}$ $0 \leq x \leq 1, \alpha, \beta > 0$

Define a binary random variable Y_i (success) = 1, Y_i (failure) = 0 for trial *i*. If the Y_i are independent and $P(Y_i = 1) = p \forall i$, then the Y_i /trials are called *Bernoulli* random variables/trials. Each trial may have c different outcomes, with probabilities p_1, \ldots, p_c . Some common discrete probability distributions follow.

The expected value (or mean) $E[X]$ of a discrete random variable X with pmf $p_X(x)$ is defined by

$$
E[X] = \sum_{x \in B} x \, p_X(x),
$$

and for a continuous random variable X with pdf $f(s)$ by

$$
E[X] = \int_{-\infty}^{\infty} s f(s) \, ds.
$$

In general, the expected value of any function $g(X)$ of a random variable X is

$$
E[g(X)] = \sum_{x \in B} g(x) p_X(x) \text{ or } E[X] = \int_{-\infty}^{\infty} g(s) f(s) ds.
$$

The variance of X is $Var[X] = E[(X - E[X])^{2}]$. The mean and variance are often denoted by μ and σ^2 , respectively. σ is called the *standard deviation*.

Theorem. For any two random variables X and Y, $E[X+Y] = E[X] + E[Y]$.

Theorem. If X and Y are independent random variables, then

$$
E[XY] = E[X]E[Y] \quad \text{and} \quad Var[X+Y] = Var[X] + Var[Y].
$$

Example. For a Bernoulli variable Y_i , $E[Y_i] = 1 \cdot p + 0 \cdot (1 - p) = p$, $Var[Y_i] = E[(Y_i - p)^2] =$ $E[Y_i^2] - (E[Y_i])^2 = p - p^2 = p(1 - p).$

Example. For an *n*-trial binomial variable $X = Y_1 + \cdots + Y_n$, $E[X] = E\left[\sum_{n=1}^{n} X_n\right]$ $\frac{i=1}{i}$ Y_i 1 $=\sum_{n=1}^{\infty}$ $\frac{i=1}{i}$ $E[Y_i] = np$

and
$$
Var[X] = Var\left[\sum_{i=1}^{n} Y_i\right] = \sum_{i=1}^{n} Var[Y_i] = np(1 - p).
$$

Example. X with a geometric distribution has $E[X] = 1/p$ and $Var[X] = (1 - p)/p^2$.

Example. For a Poisson variable X with parameter μ , $E[X] = Var[X] = \mu$.

Example. A uniform distribution X over $a \leq x \leq b$ has $E[X] = (a + b)/2$ and $Var[X] =$ $(b-a)^2/12$.

Example. An $N(\mu, \sigma^2)$ normal random variable has mean μ and variance σ^2 .

Example. A $GAM(\lambda, \alpha)$ random variable has mean α/λ and variance α/λ^2 .

Markov Inequality. Let X be a nonnegative random variable with finite mean $E[X] = \mu$. Then for any $t > 0$,

$$
P(X \ge t) \le \frac{\mu}{t}.
$$

Chebyshev Inequality. Let X be a random variable with finite mean μ and variance σ^2 . Then for any $t > 0$,

$$
P(|X - \mu| \ge t) \le \frac{\sigma^2}{t^2}.
$$

Consider a population described by a distribution (with mean μ and variance σ^2), where a value $X(\theta) = x$ of the random variable X corresponds to sampling one individual from the population. A sample x_1, \ldots, x_n from the population can be viewed as values of n independent identically distributed random variables X_1, \ldots, X_n . A *statistic* is a number derived from a sample or population, and the fundamental question is how sample statistics relate to population statistics.

The sample mean \bar{x} and sample variance $s^2 = \bar{\sigma}^2$ are

$$
\bar{x} = \frac{x_1 + \dots + x_n}{n}
$$
, $s^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2$.

These are called *unbiased* estimators, since $E[\bar{x}] = \mu$ and $E[s^2] = \sigma^2$. Observe that if s^2 were defined with $1/n$ instead of $1/(n-1)$, then $E[s^2] \neq \sigma^2$. Applying Chebyshev's inequality gives

$$
P(|\bar{x} - \mu| \ge t) \le \frac{\sigma^2}{nt^2}.
$$

Let S be an event space (set of outcomes), let $A, B \subset S$ be events, and let the events B_1, B_2 , ..., B_n ⊂ S partition S, i.e., $S = \bigcup_{i=1}^n B_i$ and $B_i \cap B_j = \emptyset$ for $i \neq j$. The conditional probability of event B , given that event A has already occurred, is defined by

$$
P(B \mid A) = \frac{P(A \cap B)}{P(A)}, \qquad P(A) > 0.
$$

For $P(A) > 0$, Bayes Theorem states that for each $k = 1, ..., n$,

$$
P(B_k | A) = \frac{P(A | B_k) P(B_k)}{\sum_{i=1}^{n} P(A | B_i) P(B_i)}.
$$