
Algorithms

Intro Problem Solving in Computer ScienceCS@VT ©2011 McQuain

1Definition

algorithm

an effective method expressed as a finite list of well-defined instructions for
calculating a function

effective method (or procedure)

a procedure that reduces the solution of some class of problems to a series of rote steps
which, if followed to the letter, and as far as may be necessary, is bound to:

- always give some answer rather than ever give no answer;
- always give the right answer and never give a wrong answer;
- always be completed in a finite number of steps, rather than in an

infinite number;
- work for all instances of problems of the class.

Algorithms

Intro Problem Solving in Computer ScienceCS@VT ©2011 McQuain

Properties 2

An algorithm must possess the following properties:

finiteness: Algorithm must complete after a finite number of
instructions have been executed.

absence of ambiguity: Each step must be clearly defined, having only one
interpretation.

definition of sequence: Each step must have a unique defined preceding &
succeeding step. The first step (start step) & last step (halt
step) must be clearly noted.

feasibility: It must be possible to perform each instruction.

Algorithms

Intro Problem Solving in Computer ScienceCS@VT ©2011 McQuain

Problems vs Algorithms vs Programs 3

For each problem or class of problems, there may be many different algorithms.

For each algorithm, there may be many different implementations (programs).

. .

. .

. .

p
r
o
b
l
e
m

algorithm 1

algorithm 2

algorithm k

. .
 .

. .

. .

. .

. .

. .

. .

program 1

program 2

program n

Algorithms

Intro Problem Solving in Computer ScienceCS@VT ©2011 McQuain

Expressing Algorithms 4

An algorithm may be expressed in a number of ways:

natural language: usually verbose and ambiguous
flow charts: avoid most (if not all) issues of ambiguity; difficult to

modify w/o specialized tools; largely standardized
pseudo-code: also avoids most issues of ambiguity; vaguely resembles

common elements of programming languages; no
particular agreement on syntax

programming language: tend to require expressing low-level details that are not
necessary for a high-level understanding

Algorithms

Intro Problem Solving in Computer ScienceCS@VT ©2011 McQuain

Common Elements of Algorithms 5

acquire data (input)

some means of reading values from an external source; most algorithms require
data values to define the specific problem (e.g., coefficients of a polynomial)

computation

some means of performing arithmetic computations, comparisons, testing logical
conditions, and so forth...

selection

some means of choosing among two or more possible courses of action, based
upon initial data, user input and/or computed results

iteration

some means of repeatedly executing a collection of instructions, for a fixed
number of times or until some logical condition holds

report results (output)

some means of reporting computed results to the user, or requesting additional
data from the user

Algorithms

Intro Problem Solving in Computer ScienceCS@VT ©2011 McQuain

pseudo-Language 6

See the posted notes on the level 1 pseudo-language.

Algorithms

Intro Problem Solving in Computer ScienceCS@VT ©2011 McQuain

Simple Example: Area of a Trapezoid 7

Computes the area of a trapezoid.

Input values must be non-negative real numbers.

#

number Height, upperBase, lowerBase

get Height

get upperBase

get lowerBase

number averageWidth, areaOfTrapezoid

averageWidth := (upperBase + lowerBase) / 2

areaOfTrapezoid := averageWidth * Height

display areaOfTrapezoid

halt

Algorithms

Intro Problem Solving in Computer ScienceCS@VT ©2011 McQuain

Simple Example: N Factorial 8

Computes N! = 1 * 2 * . . . * N-1 * N, for N >= 1

Input value must be a non-negative integer.

#

number N, nFactorial

get N

nFactorial := 1

while N > 1

nFactorial := nFactorial * N

N := N - 1

endwhile

display nFactorial

halt

Algorithms

Intro Problem Solving in Computer ScienceCS@VT ©2011 McQuain

Example: Finding Longest Run 9

Given a list of values, finds the length of the longest sequence
of values that are in strictly increasing order.
Input List must contain Sz elements.
#

number Sz # number of elements in List
list number List # list of values to be processed
number currentPosition # specifies list element currently

being examined
number maxRunLength # stores length of longest run seen

so far
number thisRunLength # stores length of current run

get Sz # initialize the list size and the
get List # list itself
if Sz <= 0 # if list is empty, no runs...

display 0
halt

endif

currentPosition := 1 # start with first element in list
maxRunLength := 1 # it forms a run of length 1
thisRunLength := 1

continues on next slide...

Algorithms

Intro Problem Solving in Computer ScienceCS@VT ©2011 McQuain

Example: Finding Longest Run 10

...continued from previous slide

while currentPosition < Sz

if (List[currentPosition] < List[currentPosition + 1])
thisRunLength := thisRunLength + 1

else
if (thisRunLength > maxRunLength)

maxRunLength := thisRunLength
endif
thisRunLength := 1

endif

currentPosition := currentPosition + 1

endwhile

display maxRunLength
halt

Algorithms

Intro Problem Solving in Computer ScienceCS@VT ©2011 McQuain

Testing Correctness 11

How do we know whether an algorithm is actually correct?

First, the logical analysis of the problem we performed in order to design the algorithm
should give us confidence that we have identified a valid procedure for finding a solution.

Second, we can test the algorithm by choosing different sets of input values, carrying out
the algorithm, and checking to see if the resulting solution does, in fact, work.

BUT… no matter how much testing we do, unless there are only a finite number of
possible input values for the algorithm to consider, testing can never prove that the
algorithm produces correct results in all cases.

Algorithms

Intro Problem Solving in Computer ScienceCS@VT ©2011 McQuain

Proving Correctness 12

We can attempt to construct a formal, mathematical proof that, if the algorithm is given
valid input values then the results obtained from the algorithm must be a solution to the
problem.

This is complex and an area of ongoing research.

Algorithms

Intro Problem Solving in Computer ScienceCS@VT ©2011 McQuain

Measuring Performance 13

How can we talk precisely about the "cost" of running an algorithm?

What does "cost" mean? Time? Space? Both? Something else?

And, if we settle on one thing to measure, how do we actually obtain a measurement that
makes sense?

This is primarily a topic for a course in algorithms, like CS 3114 or CS 4104.

