### **Integer** Division



Intro Problem Solving in Computer Science

©2011 McQuain

### **Integer** Division

So, the result can be expressed as either of the following forms: 91434 57 = 1287 +71 Dividend Divisor Remainder Quotient \* 1287 + 91434 = 71 57 The second form corresponds to a most basic result in Number Theory...

CS@VT

Division Algorithm

Given any two integers A and B, where B is not zero, there exist unique integers Q and R such that

#### A = B \* Q + R

and 0 <= R < B.

Note: most programming languages have an operation to compute the remainder when integer division is performed (e.g., % in C); most programming languages get this wrong in cases where one of the given integers is negative (by reporting a negative value for the remainder).

Modular Arithmetic

Given any two integers A and B, where B is not zero, then A mod B is defined to be the remainder obtained when A is divided by B.

For example:

17 mod 5 = 2 12 mod 6 = 0 21 mod 50 = 21

Modular arithmetic has many interesting properties and useful applications, and Discrete Mathematics provides a good coverage of the most important aspects.

For our purposes, the basic definitions should be (mostly) sufficient.

### Intermediate Value Theorem

Given two points in the XY plane, say (a, b) and (c, d) as shown below, and a value I between b and c, it is impossible to draw a continuous line from the first point to the second point that does not include at least one point with Y-coordinate I:



# Counting: the Multiplication Rule

Suppose a sequence of N independent choices must be made, and that the number of different ways to make each choice is  $C_k$ .

Then the number of different ways to make the entire sequence of N choices is

 $C_1{}^*C_2{}^*...{}^*C_N$ 

For example, if email PIDs are composed of only letters and digits, and have a mandatory length of 8 characters, then the number of different PIDs would be

 $36^*36^*...^*36 = 36^8 = 2,821,109,907,456$ 

And, if the first character is not allowed to be a digit, then the number of different PIDs would be

 $26^{*}36^{*}...^{*}36 = 26^{*}36^{7} = 2,037,468,266,496$ 

Counting: the Addition Rule

Suppose a collection of N independent choices are available, and that the number of different ways to make each choice is  $C_k$ .

Then the number of different ways to make a single one of the N choices is  $C_1+C_2+\ldots+C_N$ 

For example, suppose that you are trying to decide whether to order a serving of ice cream or a serving of cake or a serving of pie, and that there are 33 flavors of ice cream, 8 kinds of cake, and 6 kinds of pie.

Then, the total number of ways you can make your choice is

33 + 8 + 6 = 47

CS@VT

Intro Problem Solving in Computer Science

# **Counting: Permutations**

Given a collection of things, an arrangement of those things in a row is called a *permutation*.

Given a collection of N different things, the number of permutations is

 $N! = 1^{*}2^{*}...^{*}N$ 

This is really just a special case of the multiplication rule.

# **Counting: Combinations**

Given a collection of N things, an selection of a subset of K those things, in which the order does not matter, is called a *combination of K*.

Given a collection of N different things, the number of combinations of K is

$$\binom{N}{K} = \frac{N!}{K! (N-K)!}$$

For example, if you have a poker deck, the number of ways to choose a set of five cards of the same suite (a flush) is

$$\binom{13}{5} = \frac{13!}{5!(8)!} = 1287$$

CS@VT

Intro Problem Solving in Computer Science

©2011 McQuain