
Algorithms

Intro Problem Solving in Computer ScienceCS@VT ©2011 McQuain

Expressing Algorithms 1

An algorithm may be expressed in a number of ways:

natural language: usually verbose and ambiguous
flow charts: avoid most (if not all) issues of ambiguity; difficult to

modify w/o specialized tools; largely standardized
pseudo-code: also avoids most issues of ambiguity; vaguely resembles

common elements of programming languages; no
particular agreement on syntax

programming language: tend to require expressing low-level details that are not
necessary for a high-level understanding

Algorithms

Intro Problem Solving in Computer ScienceCS@VT ©2011 McQuain

Common Elements of Algorithms 2

acquire data (input)

some means of reading values from an external source; most algorithms require
data values to define the specific problem (e.g., coefficients of a polynomial)

computation

some means of performing arithmetic computations, comparisons, testing logical
conditions, and so forth...

selection

some means of choosing among two or more possible courses of action, based
upon initial data, user input and/or computed results

iteration

some means of repeatedly executing a collection of instructions, for a fixed
number of times or until some logical condition holds

report results (output)

some means of reporting computed results to the user, or requesting additional
data from the user

Algorithms

Intro Problem Solving in Computer ScienceCS@VT ©2011 McQuain

Simple Variables 3

simple variables

Some means hold a simple value, like the number of elements in a list.

Generally, we do not need to be too careful about the notion of types, but it is
useful to distinguish between variables that hold numbers, character strings, and
logical values.

Variables must be given names and those names should be descriptive. For
readability, we will not allow whitespace in names.

Variables must be declared and given a type before they are used:

number WidthInFeet

string NameOfBook

logical valueWasEven

Logical variables can have the values true and false, which are considered
part of the pseudo-language vocabulary and should not be used as variable
names.

Algorithms

Intro Problem Solving in Computer ScienceCS@VT ©2011 McQuain

List Variables 4

list variables

Some means to refer to a collection of simple values as a unit, and to also refer
to individual values within the collection.

Mathematically we can think of this as a subscripted list.

For convenience we often adopt a slightly different notation;

for a list named Scores, Scores[i] refers to the i-th element in the list;

we number elements starting at 1.

List declarations look like:

list number Scores

list string bookTitles

(We don't specify a size for the list, as we would do for an array in most
programming languages… that's not necessary for stating an algorithm.)

Algorithms

Intro Problem Solving in Computer ScienceCS@VT ©2011 McQuain

pseudo-Language: the Basics 5

acquiring data

get <variable>

Obtain a value for the specified variable; no source is specified; this could stand for
receiving a parameter to the algorithm, for reading from a file or other device, or even
for prompting a user for interactive input.

reporting results

display <variable>

Report the value of the variable in some manner; no destination is specified; this
could stand for returning a value from the algorithm, for writing to a file or other
device, or for displaying to a console window.

Algorithms

Intro Problem Solving in Computer ScienceCS@VT ©2011 McQuain

pseudo-Language: the Basics 6

computation

Use common mathematical notation, slightly adjusted to reflect keyboard limitations.

Any common mathematical and logical expressions can be formed using:

+, - addition, subtraction

*, / multiplication, division

^ exponentiation, e.g, x^y means x to the power y

NOT, ! logical negation

AND, && logical and

OR, || logical or

(,) grouping

The default precedence is defined by the ordering above (low to high precedence).

When in doubt, add parenthesis for clarity.

Algorithms

Intro Problem Solving in Computer ScienceCS@VT ©2011 McQuain

pseudo-Language: the Basics 7

computation (continued)

In addition, any standard mathematical functions can be used, with suitable notation:

| x – y |

sin(theta)

Since the basic precedence rules cannot cover all such cases, if there's any doubt
about clarity, use parentheses to clarify.

For setting the value of a variable from an expression, we will use

<variable> := <expression>

Algorithms

Intro Problem Solving in Computer ScienceCS@VT ©2011 McQuain

pseudo-Language: Precedence Rules 8

We must have some definition of the order of operations, unless we want to write lots of
parentheses. The ordering used here is slightly adapted from the precedence rules for the
C language:

highest

(,) grouping

NOT, ! logical negation

^ exponentiation

*, / multiplication, division (parenthesize if both are chained)

+, - addition, subtraction (parenthesize if both are chained)

AND, && logical and

OR, || logical or

lowest

Remember, when in doubt, add parenthesis for clarity.

Algorithms

Intro Problem Solving in Computer ScienceCS@VT ©2011 McQuain

pseudo-Language: Other Issues 9

comments

In some cases, it is useful to add comments to the (human) reader;

there must be some way to distinguish comments from the algorithm itself;

we'll use the convention that anything following the symbol '#' on a line is a
comment

halting the algorithm

halt

Some means to say "stop now".

May be used at any point within the algorithm.

Algorithms

Intro Problem Solving in Computer ScienceCS@VT ©2011 McQuain

pseudo-Language: Selection 10

selection

if <condition>

one or more statements

endif

if <condition>

one or more statements

else

one or more statements

endif

A condition may be an algebraic comparison of two variables, such as

numberOfZeros < 100

or a logical concept, such as

haveNotSeenAZero

Algorithms

Intro Problem Solving in Computer ScienceCS@VT ©2011 McQuain

pseudo-Language: Selection Examples 11

if x <= y

diff = y - x

endif

if x <= y

diff = y - x

else

diff = x - y

endif

Algorithms

Intro Problem Solving in Computer ScienceCS@VT ©2011 McQuain

pseudo-Language: Iteration 12

iteration

while <condition>

one or more statements

endwhile

Algorithms

Intro Problem Solving in Computer ScienceCS@VT ©2011 McQuain

pseudo-Language: Iteration Examples 13

while x <= y

x := 2 * x

endwhile

while true AND y >= 0

if (x > y)

display iter

halt

endif

iter := iter + 1

y := y - x

endwhile

