
IEEE TRANSACTIONS ON EDUCATION, VOL. 1, NO. 11, NOVEMBER 2007 1

Scheduling, Pair Programming, and
Student Programming Assignment Performance

Clifford A. Shaffer, Senior Member, IEEE, and Stephen H. Edwards

Abstract—We seek to address poor performance by under-
graduate students on major programming projects caused by
procrastination and inadequate time management skills related to
scheduling and pacing in project development. During Fall, 2006
we introduced two innovations into our Sophomore-level Data
Structures course: Pair programming and a simple scheduling
form. Our efforts do not appear to have had a significant dif-
ference in overall outcomes. However, the information gathered
during this intervention makes a compelling case that students
who spread their work over more time will produce a better result
without additional expenditure of total effort. Pair programming
did not have an identifiable impact on project outcomes or
student behavior.

Index Terms—Pair Programming, Scheduling, Extreme Pro-
gramming, Time Management.

I. INTRODUCTION

APersistent problem for students in introductory computer
classes is managing their time and effort on medium

and large (multi-week) programming projects. Many students
perform poorly due to poor time management skills. Procrasti-
nation is always a concern for students, but computer programs
are especially unforgiving to those who tend to delay engaging
the work. Last-night debugging marathons are a notorious
part of the computer science curriculum. Unfortunately, many
students view such desperate debugging sessions as a “rite of
passage” that they believe to be inevitable, or at least normal.
Unfortunately, this behavior often leads to failure.

While instructors routinely tell students to start program-
ming projects early and spread the workload over time,
admonishments alone historically have done little to affect
student behavior. In part, this is because telling students what
to do is not really teaching. When teaching a topic, teachers do
more than simply state content. Instead, we require students to
practice the material and/or behavior that we require. But when
it comes to time and project management, students are usually
allowed to do their programs on their own schedule without
making them apply any particular scheduling behavior. Thus,
in effect, instructors often do not actually “teach” good time
or project management behavior. This is understandable given
the inherent difficulties involved. Traditionally, programming
assignments are done by students without direct supervision on
the part of instructors, and so by its very nature it is difficult for
instructors to exercise control over student behavior. Ideally,
allowing students to do their projects independently of the

Manuscript received November, 2008.
The authors are with the Department of Computer Science, Virginia Tech,

Blacksburg, VA 24061.

instructor trains students to work on their own, which is
considered a virtue.

This paper presents the results of interventions introduced
into a sophomore-level data structures course (CS2606: Data
Structures and Object Oriented Development II) in Fall, 2006
at Virginia Tech. We attempted to improve students’ time-
management behavior by doing two things. From the student’s
perspective, the bigger intervention was the introduction of
pair programming for all projects. This choice was influenced
by reports in the literature that indicate various improvements
in student behavior when working in pairs (for example,
[1]). We tried several variations on the details for how pair
programming was implemented, as will be described. The
other intervention was to require students to develop schedules
with intermediate milestones, and regularly submit reports on
their progress in terms of time spent on projects.

By “pair programming” we refer to the style embraced by
“Extreme Programming” (XP) [2] advocates, where a pair of
programmers work together at a single computer screen during
all phases of work. While we did not explicitly monitor how
students worked on their projects, we explained the XP pair
programming approach and rationale, and made it clear that
this is the form of pair programming that we intended for
students to adopt. While we know from anecdotal accounts
that some students applied “divide and conquer” approaches to
their projects, most students report doing a significant fraction
of their programming together.

Overall, our results do not show any observable impact
from pair programming on attrition within the course, student
grades on programming assignments, or student final grades
(as compared to earlier course offerings). Students enthusi-
asm for pair programming was also mixed. These results
generally contradict the literature on classroom use of pair
programming [3], [4], [5], [1], [6] which indicate positive
performance gains and student desire for pair programming.
The literature also claims that females especially benefit from
pair programming [7], but the female students in our courses
showed no greater enthusiasm for it than males (though the
numbers were too small to get meaningful statistics).

Students also did not show a desire for keeping schedules.
However, students who did turn in schedules regularly scored
higher on assignments, and students who reported putting
in more time working on an assignment well ahead of the
deadline also scored higher on assignments. We cannot tell
from the data available if the scheduling exercise helped
performance, or if stronger students are simply more likely
to turn in scheduling data and work on their projects earlier.

0000–0000/00$00.00 c© 2007 IEEE

IEEE TRANSACTIONS ON EDUCATION, VOL. 1, NO. 11, NOVEMBER 2007 2

However, our data do clearly show that good scheduling
behavior is correlated positively with successful outcomes in
programming assignments. This is the most significant result
of our study.

II. PROCEDURES AND DATA COLLECTED

Two sections of CS2606 Data Structures and File Processing
were offered in Fall, 2006. One was taught by Shaffer, and one
by another instructor. There were roughly 30 students in each
section. The two sections were given the same lecture topics,
the same project assignments and the same homework assign-
ments. Both sections had the same treatment with respect to
pair programming and scheduling requirements.

The authors have taught this class numerous times over the
years, and generally use a similar format and assignments.
Thus we are intimately familiar with how students have
performed in the past.

As is typical for this course, we required students to do four
major programming assignments, worth a total of 45% of the
semester grade. Students were given three to four weeks to
complete each programming assignment. A significant fraction
of class time was devoted to discussing the assignments,
going over design issues, practical implementation issues, and
answering student questions. To whatever extent the students
have questions, we often allow the questions to drive that
portion of the class.

During Fall, 2006, the assignments were as follows:

1) Implement a BST and a k-d tree as indices to a database
of city records with names (a string) and two (integer)
coordinates.

2) Implement a 2-3+ tree along with the k-d tree as indices
to a database of seminar records with many fields.

3) Implement a best-fit sequential memory manager along
with a basic buffer pool as intermediary for a disk file.

4) Implement a B+-tree storing a simple seminar record to
a file with a buffer pool as intermediary.

We did not design the project list to be harder or different in
quality than in previous semesters where we did not use pair
programming. However, in retrospect, we believe this project
list is a bit harder than what we typically give. Not vastly
different, but maybe 10% harder.

In addition to grades on projects, homeworks, and tests, we
also collected other information to help us assess what is going
on. This included:

• After each of programming assignments 1-3, students
wrote a one-page “reflection” document. The purpose was
both to get students to think about the new programing
and scheduling experience, and also to give us their
feedback on it. Students got 1% of their semester grade
for each reflection document.

• For the last project, the “reflection” document was a
survey of questions answered on a 1-5 point Likert scale.
This will be referred to herein as “the survey,” and is
discussed further in Section VII.

• During each project we collected mandatory schedule
sheets, which are our main source for primary data. These
are described in Section VIII.

III. SEMESTER OUTCOMES

For Shaffer’s section, 34 students began the class, and
four dropped the class early in the semester, without penalty.
One student withdrew from the course, which is a form of
late dropping the class that has a “cost” in that students at
Virginia Tech may only withdraw from a limited number of
courses. Three students “gave up” the course without officially
withdrawing, and so received a grade of “F”. These numbers
are typical for this course. The final grade distribution was: 6
A, 2 A-, 3 B+, 2 B, 3 B-, 4 C+, 1 C, 1 C-, 2 D+, 1 D, 1 D-,
4 F. Thus, of 30 students receiving a grade, 21 “passed” (C
or better by our system) and 9 “failed” (C- or below). Of the
original 34 enrolled in the class, 21/34 or 61.8% successfully
completed the course.

How does this compare with previous offerings of the
course? Both the drop rate and the pass rate for this semester,
while high, are within the expected range reflected in histor-
ical data for the course. In Spring 2006, 37 of 52 (71.2%)
students completed with C or better (this includes 8 course
withdrawals). However, note that this number does not include
those who dropped. The closest available comparable number
for this semester is 21/30 or 70.0% success. What this means
is that the gross overall outcome is indistinguishable from the
previous semester, and within the historical ranges over the
past ten years.

IV. PAIR PROGRAMMING

Instructors have many options on the various details of how
students form pairs. For the first assignment, the instructors
assigned students to their partners. An effort was made to pair
perceived “strong” students with “weak” students, based on
knowledge of previous grades. For the second assignment,
the instructors again selected the pair partners. Again we
tried to make sure that two (perceived) weak students did
not work together. It was discovered in retrospect that on
both the first and second assignments, the instructors were
not always successful in ensuring that two weak people didn’t
work together. Despite instructors’ best efforts, it is not always
easy to tell “strong” from “weak” students.

In the third assignment, all students were required to work
with a partner. Students were given the option to select their
own partner (provided they did not repeat a partner from a
previous assignment), and the instructors picked partners for
students who did not pick their own. In Shaffer’s section,
only a few students picked their own partners for the third
assignment, with roughly half of all students in the section
asking the instructor to pick a partner for them. In the other
section, students were more willing to pick their own partners.

On the fourth assignment, we allowed students to pick
partners, or work alone, or put their name into a pool for
the instructors to pick partners for them. 12 out of 49 students
elected to work alone, and two students split their partnership
in the middle of the project. One pair was allowed to repeat
working together, but the rest were all new partnerships. In
Shaffer’s section, 14 students asked the instructor to pick a
partner for them, while five picked their own partners (one
with a member of the other section). While the distribution

IEEE TRANSACTIONS ON EDUCATION, VOL. 1, NO. 11, NOVEMBER 2007 3

was similar in both sections in terms of solo vs. pairs, we
note that most of the students in the other section who desired
a partner picked their own.

V. CLASS FORUM

For many years, an online class discussion forum played
a key role within our data structures course (see [8] for a
detailed analysis of the forum discussion in an earlier year
of this course). Since the projects are fairly difficult, and a
major focus for the students, the class forum has traditionally
provided a mechanism for students to discuss design and
implementation issues. This opened up many opportunities for
peer teaching and a generally high level of student interaction.
It gave students an opportunity to receive more input regarding
design issues than we would have time for in regular classroom
discussions.

This semester saw a sudden decrease in class forum use. Un-
fortunately, this is a subjective observation by the instructors,
since we do not routinely keep statistics on forum message
counts and other objective information. But the decrease was
substantial, perhaps dropping to only one half or one third
of the previous level of student posts. In past semesters, the
post rates were so high that students would complain about
the sheer mass. This semester was completely different.

We propose two possible explanations for the great in
student posts. (1) Fewer students in the course. Collectively,
there were about 60 students in the two sections, where in
the past we typically had over 100 students taking the course
in a given semester. However, we doubt that this is a primary
cause, because in the past we had much duplicate posting. This
semester, the posts did not span typical discussion possibilities.

(2) Pair programming might be reducing the perceived
need for discussion about the projects. Since students have
somebody to bounce ideas off of and to verify spec con-
formance, they might feel less need to ask questions of the
instructor or the class as a whole. Unfortunately, actual student
understanding of the projects appears to be less than they
think. More often than in the past, students misinterpreted
the assignment requirements, and they were less likely than
in the past to come up with good designs. We hypothesize
that this is because they are not seeing as much input about
possible design choices due to less student-directed discussion
of design issues on the forums.

VI. INFORMAL ANALYSIS OF REFLECTION ASSIGNMENTS

After completing each programming assignment, each stu-
dent was required to turn in an assignment (each worth 1% of
the semester grade) that encouraged them to “reflect” on the
programming project just completed. Students were guided by
a series of suggested issues to address in their discussion, but
the documents were free-form prose.

An informal analysis of the reflection documents reveals
the following. The level of acceptance for pair programming
ran through great variation of opinion, from highly positive
to highly negative. While the majority of students reported
that they were in favor of pair programming, many expressed
concerns about the relationship they had with their own

partner. The number one complaint about pair programming
is getting a bad partner. This did not change over the course
of the semester.

The majority of students reported that they did not like to do
the (mandatory) scheduling sheets. They did not perceive the
self-scheduling process to be of much value. Partly, this seems
to be because they focused on the time-estimation aspects of
the scheduling process. Since they believed (correctly) that
they are poor at estimating required time, their conclusion
generally was that there was nothing else of value in the
scheduling process. This is in sharp contrast to the instructors’
primary rationale for conducting the scheduling process, which
was to encourage (and monitor) starting work early on projects
and spreading the workload throughout the three to four week
period. There was a significant minority of students who said
that scheduling was valuable to their success, and were greatly
in favor of doing some form of scheduling.

During the first two assignments, we required students
to spend at least one two-hour session in the departmental
computer lab each week. For the first assignment, we required
this time to be during a limited set of hours when the class
TAs were available to monitor them. A significant majority
of students didn’t like having to go to lab, especially during
constrained hours. For the second project we allowed students
to go to the lab anytime it was open. A few students thought
being forced to go to lab was really important, particularly as a
mechanism to help them exercise control over a procrastinating
partner. We abandoned requiring students to spend time in the
lab for the third and fourth programming assignments. Perhaps
coincidentally, student score averages were lowest on the last
two assignments.

VII. END-OF-SEMESTER SURVEY

After the final programming project of the semester, stu-
dents were given a survey to complete. 45 student responses
were received. In this section, we present the questions and a
summary of the students’ responses.

The first question asked: Over the course of doing your four
programming assignments in this course, what percentage of
the time that you spent working on the assignments were you
actually with a partner? The average of responses was 73.8%.

For the remaining questions, all answers were marked
on a scale of 1-5, where 1 means “strongly disagree,” 2
means “disagree,” 3 is neutral, 4 means “agree,” and 5 means
“strongly agree.” The questions and a summary of responses
appears in Figure 1.

The results support our interpretation of the student reflec-
tions reported in Section VI. Both the survey and the reflec-
tions show that students were mildly positive about pair pro-
gramming (neutral to agreeing that pair programming should
be used and that it improved their performance). Both the
survey and the reflections show that students were generally
negative about keeping schedules (neutral to disagreeing that
scheduling improved their performance or had other benefits).

Anecdotal evidence acquired in the semester since the
course ended indicates that many students have concluded in
retrospect that scheduling is beneficial to them. In particular,

IEEE TRANSACTIONS ON EDUCATION, VOL. 1, NO. 11, NOVEMBER 2007 4

Strongly Strongly
Question Disagree Disagree Neutral Agree Agree Avg
I turned in better programming assignments and got better scores
on them because I worked with a partner.

2 7 9 12 15 3.69

Overall, my partners did their fair share of work on the program-
ming assignments.

0 3 7 25 10 3.93

Overall, I did my fair share of the work on the programming
assignments.

0 0 2 24 19 4.38

I prefer to pick my own partner when doing pair programming. 1 6 13 9 16 3.73
Overall, I prefer pair programming to doing programming assign-
ments alone.

5 7 9 11 13 3.44

I think that CS2606 should continue to use pair programming in
the future.

6 5 11 8 15 3.47

I think there should be a requirement to spend some amount of
time in the lab during programming assignments.

17 11 8 7 2 2.24

Being required to make an estimate of total time required to
complete the project benefited me.

14 10 9 10 2 2.47

Being required to make an estimate of time required for the various
parts of the project benefited me.

14 8 7 15 1 2.58

Being required to make a schedule of due dates for intermediate
project milestones benefited me.

11 10 8 13 3 2.71

Being required to keep track of the hours I spent on the project
benefited me.

10 10 11 12 2 2.69

Fig. 1. Table of survey results

students who had to repeat the course in the following semester
report that they think the scheduling process is beneficial. Note
that in Spring 2007, the instructor (not involved in the study
reported here) agreed to require students to turn in schedule
sheets.

VIII. SCHEDULE SHEET DATA

Aside from pair programming, the other major intervention
used on this class was a requirement for students to complete
and turn in scheduling sheets. This was done roughly once per
week during the three to four week period for each project.
Thus, students typically turned in four schedule sheets during
a typical project cycle.

The schedule sheets were derived from [9]. They looked as
follows. In the first column, students entered their own list of
tasks required to complete the project. Students were given a
lot of leeway in deciding how to break down the projects into
tasks. The instructors provided a rough outline of tasks, but
the students were expected to refine these further into subtasks,
which were then listed in the second column of the schedule
sheet. The third, fourth, and fifth columns required students to
indicate which member of the pair was the coder, debugger,
or tester for each subtask. Each member of the partnership
was required to have primary responsibility for at least one of
these for each substask. The sixth column indicated the self-
imposed deadline that the students placed on that subtask. The
seventh column indicated the initial time estimate (in hours) to
complete the subtask. The eighth column indicated the current
(revised) estimate for time needed to complete the subtask,
which could be updated as desired by the students. The ninth
column indicated the elapsed time (in hours) so far spent on
the subtask, with the final column indicating the estimated time
remaining for the subtask. The original time estimate was not
meant to change, but students were expected to update the
current estimate and elapsed time columns each week.

Est. Early Final
Assignment Hrs. Hrs. Hrs. Score Late
1 29.2 13.2 27.6 78.6% 27.3%
2 32.4 17.1 35.4 86.6% 20.7%
3 27.7 11.3 33.1 69.9% 10.3%
4 35.7 16.4 41.2 69.2% 23.1%

Fig. 2. Summary of schedule and performance data

Figure 2 shows average results from schedule sheets to
provide a better picture of student behavior on the four
programming assignments in the semester. The column labeled
“Est. Hrs.” shows the average of the initial estimates of time to
complete the project provided by students before they started
work. The “Early Hrs.” column shows the average hours that
students reported having already worked approximately one
week before the assignment was turned in. “Final Hrs.” shows
the average total time students reported working on each
assignment once the assignment was turned in. “Score” shows
the average scores achieved on each assignment, not including
any early bonuses or late penalties. Finally, “Late” shows the
percentage of students who submitted each assignment late
(past the due date, incurring a score penalty).

To assess the impact of both pair programming and schedule
use, schedule data were analyzed along with information about
assignment scores, test scores, course final grades, and partner
pairings.

A. Results for Pair Programming

The primary motivation for introducing pair programming
in this course was to improve student success. Student success
can take many forms, but the primary indicators of interest in
this course were the rate at which students drop the course, the
rate at which students successfully pass the course, and student
scores overall. As discussed in Section III, these outcomes fall
within the historical data for this course over the past ten years,
so pair programming had no discernible effect.

We were able to compare student scores when working in

IEEE TRANSACTIONS ON EDUCATION, VOL. 1, NO. 11, NOVEMBER 2007 5

pairs against student scores when working alone, since 29% of
the students elected to complete the final assignment without a
partner. Students working in pairs achieved a mean raw score
of 65.7% on this assignment, while students working alone
achieved a mean score of 66.5%. Thus, there was no significant
difference in outcome observable from the decision of whether
to work in a pair or solo.

We next attempt to measure the impact that a partner’s abil-
ity has on programming assignment scores. If we use course
test scores as an independent indicator of student ability, we
can examine the extent to which a student’s ability and/or
their partner’s ability contribute to assignment performance.
An analysis of variance shows that both a student’s own
test scores, his/her partner’s test scores, and the interaction
between the two all have a significant effect on assignment
scores (df = 88, F = 10.4, α < 0.05). Higher test scores point
to better programming performance, for both partners.

If we look at pairs where one of the partners drops out of
the course, we see a negative effect. Partnering with a student
who (eventually) does not complete the class reduces one’s
programming scores (df = 98, F = 6.89, α < 0.5).

Overall, however, statistical tests reveal no significant re-
lationships between participation in pairs and student test
scores or student final course grades. Perhaps this is because
students paired with strong partners had increased scores,
while students paired with weak partners had decreased scores,
to the extent that there was no net effect on scores from
working in pairs.

B. Results for Schedules

Results from the scheduling activities were more positive.
The motivation for requiring students to turn in schedules
was to encourage students to pay more attention to their time
management and to start working on assignments earlier.

First, we investigated whether paying more attention to
scheduling was related to better scores on assignments. We
compared students who turned in all their schedule information
against students who turned in an incomplete set of schedule
forms. (Students were penalized for not turning in schedule
forms, which certainly affected the turn-in rate). Students who
turned in all schedule data achieved a mean score of 83.4%
while those who omitted some or all schedule data achieved a
mean of 55.8%, a significant difference (df = 116, F = 45.32,
α < 0.05).

For corroboration, we also examined the schedule sheets
turned in approximately one half to one week before each
assignment was due, looking at the hours students reported
having completed so far–the “Early Hrs.” in Figure 2. Students
who turned in this schedule sheet and reported some number
for “Early Hrs.” achieved an average of 80.8%, compared to
51.9% for those omitting this data or not turning in the sheet
(df = 116, F = 30.63, α < 0.05). From this, we can conclude
there is a clear performance difference between the group of
students who turned in scheduling information and those who
did not.

Using data reported on the schedules, we also examined
the amount of time students put in “early.” Because of the

�

0

20

40

60

80

100

0% 20% 40% 60% 80% 100% 120%

Score vs. Early Time

Fig. 3. Scatterplot showing student performance on projects versus fraction
of original time estimate completed approximately one week prior to turning
in the project. Project maximums (vertical axis) are normalized to 100 to
be comparable. Time percentages (horizontal axis) can be greater than 100%
since students might spend more time than originally estimated.

wide variability in programmer abilities and the amount of
time it takes them to write programs, we looked at the percent
of total time students completed early, where any remaining
hours were completed during the final week before the project
was turned in. An analysis of variance shows that there is a
significant positive relationship between the percentage of total
hours that are worked early and assignment scores (df = 86,
F = 25.89, α < 0.05).

Unfortunately, this result is difficult for students to make
use of, since they do not know how long it will eventually
take them to complete the project. However, students are
aware of their initial estimates (however flawed they may
be). From these, we computed the percentage of the initially
estimated time that had been completed “early.” This measure
is driven completely by information available to students in
advance. The same positive relationship exists between the
percent of the initial estimate that was completed early and
the assignment scores (df = 98, F = 33.05, α < 0.05).

Figure 3 shows a scatterplot of score versus percent of the
original estimate completed approximately one week before
the project was turned in. The horizontal line is the mean
across all four projects (where project maximum scores are
normalized to 100 for comparison). The vertical line is the
optimal partition (the one with the least error after an exhaus-
tive exploration of all possible partitions), which is 36.8% of
initially estimated time completed before the last week. These
two lines group most of the submission into the upper right
(good) and lower left (bad) quadrants, with the upper left/lower
right as sparse as possible. The scatter plot contains about
100 points, but only about 50 or so are visible because both
schedule sheets and project scores went to pairs of students.

We see that about two thirds of the students scoring below
the mean completed less than 36.8% of the estimated time in
advance. The vast majority of submissions that scored below
the overall class mean for programming assignments involved
students who put in fewer than 50% of their initially estimated
hours before the final week. Conversely, the vast majority of
students who scored above the mean completed more than
36.8% of the estimated time in advance. In fact, this scatterplot
greatly understates the effect of doing a significant percentage
of the project early, since we are displaying raw scores. We
gave a bonus for turning projects in early and a substantial

IEEE TRANSACTIONS ON EDUCATION, VOL. 1, NO. 11, NOVEMBER 2007 6

penalty for turning projects in late. When these bonuses and
penalties are included, the effect of doing work early becomes
even greater.

We also compared both student initial estimates of total time
needed, and final records of total time used, against project
scores. There was no significant relationship found against
assignment scores. Thus, there is no reason to believe that
students who did well simply put in more time.

However, while there is clearly strong evidence that students
who turn in and hold to schedules will then score well
on the corresponding assignments, this does not necessarily
mean that the act of scheduling causes better performance.
To investigate this issue, we also examined the relationship
between maintaining a schedule and overall student ability,
using exam scores in the course as a separate indicator of
student ability. An analysis of variance indicates that students
who turn in schedules are also more likely to have scored
higher on tests (df = 108, F = 7.64, α < 0.05).

As a result, it is possible that stronger students, who are
more likely to score well on programming assignments, are
also more likely to complete schedule sheets and/or put in
more time earlier when working an assignment. However,
these results are also consistent with the idea that students who
start work earlier will perform better. It might also explain why
some students, in retrospect, have come to see schedules as
beneficial, even if they resisted them in the beginning.

It is important to remind the reader at this point that
our interventions had no significant impact on overall class
performance. We believe that we are observing a very real and
very important correlation between good time management
practice and project performance. However, exhorting students
to use good time management, and even requiring them to keep
schedules, did not appear to be enough to change behavior (or,
at least it didn’t change gross outcomes).

IX. CONCLUSIONS

We present a number of conclusions related to pair pro-
gramming and scheduling. With respect to pair programming,
we have found no evidence to support any claims regarding
it effectiveness. Pair programming did not appear, for us, to
provide any of the benefits that we have seen presented in the
literature. Pair programming did not appear to make students
perform better. Partners did not appear to work harder or
otherwise influence their behavior so as not to “let down” their
partner (in contrast to the positive behavioral results discussed
in [1]). Taken as a whole, the class seems to perform about
the same if they work in pairs or do not work in pairs. We see
no harmful effects from allowing students to work in pairs,
including no evidence that one student will receive a better
grade than deserved due to the work of their partner. We are
willing to speculate that some students work better in pairs
while others work better solo. Thus, it could be that giving
students the option on whether to partner or not will provide
some benefit.

Starting a project early and working steadily over time does
not result in increased total time to complete the project, but
it does correlate to better scores on projects. So it is clearly

in a student’s best interest to do this. Unfortunately, getting
students to do so seems difficult. Students do not perceive
much value in tracking their own time spent on projects, or in
attempting to plan their time through scheduling. The simple
act of requiring students to turn in schedules does not seem
to influence their behavior much.

The scheduling process might work better if there were
required intermediate deliverables, and feedback to the stu-
dents about whether they are on track. It may also work better
if students are explicitly instructed in where the value lies,
and what the motivation for the activity is, so that they are
less focused on the difficulty of estimating time requirements
for software projects. In the future, we plan to improve such
intermediate feedback.

An effective strategy might be to meet with individual
students at some point during the assignment period (say a
week before the due date). The purpose of the meeting would
be to check in with them on their progress and make sure
that they are on track. This could avoid misunderstandings
of the assignment, since it gives them an explicit opportunity
to discuss the assignment with the instructor. It also should
further motivate them to get significant work done prior to the
meeting.

One management option is to break larger projects into a
series of smaller ones, thus requiring students to spread the
work out. This approach does nothing to train students to use
better time management. Instead, it merely puts off giving
students experience with managing larger projects.

REFERENCES

[1] L. Williams and R. Kessler, “The effects of ”pair-pressure” and ”pair-
learning” on software engineering education,” in Proc. 13th Conf. on
Softw. Eng. Educ. and Training. IEEE Computer Society, 2000, pp.
59–65.

[2] K. Beck, Extreme Programming Explained: Embrace Change. Reading,
MA: Addison-Wesley, 2000.

[3] B. Hanks, “Student attitudes toward pair programming,” in ITiCSE ’06:
Proc. 10th annual SIGCSE conf. on Innovation and tech. in comp. sci.
educ., June 2006, pp. 113–117.

[4] E. Mendes, L. Al-Fakhri, and A. Luxton-Reilly, “A replicated experiment
of pair-programming in a 2nd-year software development and design
computer course,” in ITiCSE ’06: Proc. 10th annual SIGCSE conf. on
Innovation and tech. in comp. sci. educ., June 2006, pp. 108–112.

[5] A. Cockburn and L. Williams, The costs and benefits of pair program-
ming. Boston, MA, USA: Addison-Wesley Longman Publishing Co.,
Inc., 2001, pp. 223–243.

[6] L. Williams and R. Kessler, Pair Programming Illuminated. Boston,
MA, USA: Addison-Wesley Longman Publishing Co., Inc., 2002.

[7] C. McDowell, L. Werner, H. Bullock, and J. Fernald, “Pair programming
improves student retention, confidence, and program quality,” Comm. of
the ACM, vol. 49, no. 8, pp. 90–95, August 2006.

[8] S. Edwards and C. Shaffer, “An analysis of a course-oriented electronic
mailing list,” Comp. Sci. Educ., vol. 9, no. 1, pp. 8–22, April 1999.

[9] J. Spolsky, “Painless software schedules,” http://www.joelonsoftware.
com/articles/fog0000000245.html, March 2000.

Cliff Shaffer is an associate professor in the Department of Computer Science
at Virginia Tech since 1987. He received his PhD from University of Maryland
in 1986. His current research interests include problem solving environments,
bioinformatics, component architectures, visualization, algorithm design and
analysis, and data structures.

Steve Edwards is an associate professor in the Department of Computer
Science at Virginia Tech. He received his PhD from Ohio State University. His
current research interests include software reuse, component-based software,
automated testing, automated grading, and computer science education.

