
 Testing

 Computer Science Dept Va Tech Aug., 2001 ©2001 Barnette ND, McQuain WD

1 Testing

Table of Contents

– Levels of Verification

– Testing and Errors

– Life Cycle Testing

– Integration Testing

– System Testing

– Function Testing

– Acceptance Testing

– Testing Experiment

– Exhaustive Testing

– Testing Principles

– Testing Mechanics

– White Box Testing

– White Box: Logic Testing

– White Box: Path Testing

– Test Path Determination

– Path Input Domains

– Reverse Execution

– Reverse Path Test Example

– Reverse Path Test Example (cont)

– Testing Reliability

– Mutation Analysis

– Mutation Analysis Process

– Error Seeding

– Error Seeding Process

 Testing

 Computer Science Dept Va Tech Aug., 2001 ©2001 Barnette ND, McQuain WD

2 Levels of Verification

The Unreachable Goal: Correctness

 Testing

 Computer Science Dept Va Tech Aug., 2001 ©2001 Barnette ND, McQuain WD

3 Testing and Errors

Relationship between Discovered Errors and Undiscovered Errors

– 40-50% of all development time is spent in the testing process

– Humans (programmers) are NOT good at testing. The process of

testing admits that one has produced code with errors.

– Successful testing can be thought of as successfully finding errors

and testing failure implies not discovering any errors.

Probability Increases

 as Number of Errors Increases P
ro

b
ab

il
it

y
 o

f
E

x
is

te
n
ce

o
f

M
o
re

 E
rr

o
rs

Number of Errors Found to Date

Reference:
“The Art of Software Testing”, Meyers, Glenford J.,
John Wiley & Sons, 1979

"Testing can establish the presence of errors, but never their absence."

[Edsger Dijkstra]

 Testing

 Computer Science Dept Va Tech Aug., 2001 ©2001 Barnette ND, McQuain WD

4

Testing Phases

– Regression Testing involves fixing errors during testing and the re-

execution of all previous passed tests.

– Unit Testing utilizes module testing techniques (white-box / black-

box techniques).

– Integration Testing involves checking subsets of the system.

– Acceptance, Function and System testing is performed upon the

entire system.

Life Cycle Testing

Requirements

Specification

High Level Design

Low Level Design

Coding

Integration

Testing

Deployment

Maintanence

Acceptance Test

Function Test

System Test

Integration
Test

Unit Test

Regression Test

 Testing

 Computer Science Dept Va Tech Aug., 2001 ©2001 Barnette ND, McQuain WD

5 Integration Testing

Bottom-Up Testing

– Unit Test (Black & White box techniques)

– discovers errors in individual modules

– requires coding (& testing) of driver routines

Top-Down Testing

– Main module & immediate subordinate routines are tested first

– requires coding of routine stubs to simulate lower level routines

– system developed as a skeleton

Sandwich Integration

– combination of top-down & bottom-up testing

Big Bang

– No integration testing

– modules developed alone

– All modules are connected together at once

 Testing

 Computer Science Dept Va Tech Aug., 2001 ©2001 Barnette ND, McQuain WD

6 System Testing

System «-» Requirements

– Does not test the system functions

– Compares the system with its objectives, (system behavior)

– External Specification not used to compose the test cases

(eliminates or reduces possible conflict of goals)

– System test cases are derived from the user documentation and

requirements

– Compares user doc to program objectives

– No general system test-case-design procedure exists

Program

 Requirements

User

 Documentation

Program

External

 Specifications

 Testing

 Computer Science Dept Va Tech Aug., 2001 ©2001 Barnette ND, McQuain WD

7 Function Testing

System «-» Specifications

– Checks that the system satisfies its external specification

– Entire system is viewed as a "Black Box"

– Techniques:

† Equivalence Partitioning

† Boundary-value Analysis

† Cause-Effect Graphing

Functional
Verification

Testing

Establishes Level
of Confidence

Proof of
Correctness

External

 Specifications

Program

 Requirements
User

 Documentation

Program

 Testing

 Computer Science Dept Va Tech Aug., 2001 ©2001 Barnette ND, McQuain WD

8 Acceptance Testing

System «-» Users

– Tests the program against the current needs of the users and its

original objectives.

– Usually performed by the end user (customer)

– Contract may require, as part of acceptance test:

 † performance tests (throughput, statistics collection, ...)

 † stress tests (system limits)

– If performed by system developers may consist of (alpha),

(beta) testing

Program

 Requirements

User

 Documentation

Program

External

 Specifications

 Testing

 Computer Science Dept Va Tech Aug., 2001 ©2001 Barnette ND, McQuain WD

9 Testing Experiment

Program

– Program reads 3 integer values from a line.

– The 3 values represent the lengths of the sides of a triangle.

– The program outputs whether the triangle is equilateral, isosceles, or

scalene.

– Write a set of test cases which would adequately test this program!

Test Cases

– Valid scalene triangle.

– Valid equilateral triangle.

– Valid Isosceles triangle.

– All possible permutations of Isosceles triangles

(e.g. (3,3,4) (3,4,3) (4,3,3))

– One side having a zero value.

– One side having a negative value.

– Degenerate Triangle (e.g. 1-Dim (1,2,3)

– All possible permutations of Degenerate Triangles

(e.g. (1,2,3) (3,1,2) (1,3,2))

– Invalid Triangle (e.g. (1,2,4))

– All possible permutations of invalid triangles.

– All sides = 0.

– Non-integer values.

– Incorrect number of sides ...

1 2

3

 Testing

 Computer Science Dept Va Tech Aug., 2001 ©2001 Barnette ND, McQuain WD

10 Exhaustive Testing

Example

Practical Limitations

– How long will it take to try all possible inputs at a rate of one

test/second?

232 tests * 1 second / test

= 232 seconds

= 232 / (60 * 60 * 24 * 365) years

> 232 / (26 * 26 * 25 * 29) years

= 232 / 226 years

= 26 years = 64 years

– Exhaustive Testing cannot be performed!

Component32 Bit
Integer

Output

 Testing

 Computer Science Dept Va Tech Aug., 2001 ©2001 Barnette ND, McQuain WD

11 Testing Principles

General Heuristics

– The expected output for each test case should be defined in

advance of the actual testing.

– The test output should be thoroughly inspected.

– Test cases must be written for invalid & unexpected, as well as

valid and expected input conditions.

– Test cases should be saved and documented for use during the

maintenance / modification phase of the life cycle.

– New test cases must be added as new errors are discovered.

– The test cases must be a demanding exercise of the component

under test.

– Tests should be carried out by a third party independent tester,

developer engineers should not privatize testing due to conflict of

interest

– Testing must be planned as the system is being developed, NOT

after coding.

Goal of Testing

– No method (Black/White Box, etc.) can be used to detect all errors.

– Errors may exist due to a testing error instead of a program error.

– A finite number of test cases must be chosen to maximize the

probability of locating errors.

Perform testing to ensure that the

probability of program/system failure due to

undiscovered errors is acceptably small.

 Testing

 Computer Science Dept Va Tech Aug., 2001 ©2001 Barnette ND, McQuain WD

12 Testing Mechanics

Testing components

– Drivers

† Test harness

– Stubs

† Scaffold Code

Test Case

 Inputs
Valid Test

 Outputs

Driver

Routine X

Stub

a
b

d
c Component

 Under

 Testing

Required by X

 but NOT coded

 Testing

 Computer Science Dept Va Tech Aug., 2001 ©2001 Barnette ND, McQuain WD

13 White Box Testing

Structural Testing

– Exercise of Source code and internal data structures

– Test cases are derived from analysis of internal

module logic and external module specifications

– Logic Coverage (condition/decision testing)

† Statement Coverage

† Decision Coverage

† Condition Coverage

† Decision/Condition Coverage

† Multiple Condition Coverage

– Path Coverage

† Control Flow Testing

Functional

Description

and actual

implementation

Correct I/O

relationships

are verified

using both :

 Testing

 Computer Science Dept Va Tech Aug., 2001 ©2001 Barnette ND, McQuain WD

14 White Box: Logic Testing

Logic Coverage

– Statement Coverage

† Every statement is executed at least once.

– Decision Coverage

† Each decision is tested for TRUE & FALSE.

† correctness of conditions within the decisions are NOT tested

– Condition Coverage

† Each condition in a decision takes on all possible outcomes at

 least once.

† Does not necessarily test all decision outcomes.

† Test cases do not take into account how the conditions affect

 the decisions.

– Decision/Condition Coverage

† Satisfies both decision coverage and condition coverage.

† Does NOT necessarily test all possible combinations of

 conditions in a decision.

– Multiple Condition Coverage

† Test all possible combinations of conditions in a decision

† Does not test all possible combinations of decision branches.

 Testing

 Computer Science Dept Va Tech Aug., 2001 ©2001 Barnette ND, McQuain WD

15 White Box: Path Testing

Control Flow Graph

– Node: sequence of statements ending in a branch

– Arc: transfer of control

Path Testing

– Exercise a program by testing all possible

execution paths through the code.

– Method

1. Enumerate the paths to be tested

2. Find the Input Domain of each

3. Select 1 or more test cases from domains

– Problem: Loops (number of paths)

Paths: ABC; ABBC; AB ... BC

– Solution:

† Restrict loop to N iterations

† Select small number of paths that yield reasonable testing.

Exhaustive Path Testing (impossible)

– (analogue of exhaustive input testing)

– requires executing the total number of ways of

going from the top of the graph to the bottom

– approx. 100 trillion, 1020 520 + 519 +. . . + 51

where 5 = number of unique paths

– assuming all decisions are independent

of each other

– specification errors could still exist

– does not detect missing paths

– does not check data-dependent errors

A

C

B

 Testing

 Computer Science Dept Va Tech Aug., 2001 ©2001 Barnette ND, McQuain WD

16 Test Path Determination

Independent Path

– any path that introduces at least one new set of processing

statements (nodes), i.e. it must traverse an edge not previously

covered.

– Independent Paths:

1. 1 - 2 - 6

2. 1 - 2 - 3 - 5 - 2 - 6

3. 1 - 2 - 3 - 4 - 5 - 2 - 6

Cyclomatic Complexity

– upper bound on the number

of independent paths, i.e. number

of tests that must be executed in

order to cover all statements.

– CC

 = edges - Nodes + 2

 = E - N + 2

 = 7 - 6 + 2 = 3

 = Predicate Nodes + 1

 = P + 1

 = 2 + 1 = 3

2

6

3

1

4

5

 Testing

 Computer Science Dept Va Tech Aug., 2001 ©2001 Barnette ND, McQuain WD

17 Path Input Domains

Input Domain Subset

Reverse Path

Analysis

Input

 Domain Domain for

 Path: ABDEAF

A

F

B

C D

E

Input

 Domain

?

?
? Create the test data

by 'tracing' the path

in reverse, collecting

the conditions on

the input variables.

 Testing

 Computer Science Dept Va Tech Aug., 2001 ©2001 Barnette ND, McQuain WD

18 Reverse Execution

Reverse execution

of a decision

Reverse execution of a sequence of decisions

– Collected decisions are connected logically by AND.

Y > 100

Y <= 100 Y > 100

F T Y = Y + 50 ;

Y > 50

Y > 100

 Reverse execution

 of an assignment

Y > 50

Y > 100 F T

T

Y <= 100 Y > 100

(Y > 100)

 &&

 (Y > 50)

(Y > 50)

 &&

 (Y <= 100)
 Y > 100

 Testing

 Computer Science Dept Va Tech Aug., 2001 ©2001 Barnette ND, McQuain WD

19 Reverse Path Test Example

Test Component

– Computes Z = XY where X, Y are nonnegative integers

cin >> X >> Y ;

 Z = 1 ;

Y % 2 == 1

While

 Y != 0

Y = Y % 2 ;

 X = X * X ;

Z = Z * X ;

cout << Z ;

T

T

Algorithm:

 2/)1(2

(y/2)2

)(: odd isy if

)(:even isy if

y

y

xx

x
x

 Testing

 Computer Science Dept Va Tech Aug., 2001 ©2001 Barnette ND, McQuain WD

20 Reverse Path Test Example (cont)

Test Path: 1 2 3 4 5 2 6

Reverse

Path

Execution

– (6)

– (2)

Y = 0

– (5)

Y = Y / 2

 Y / 2 = 0

– (4)

– (3)

Y / 2 = 0 &&

Y % 2 = 1

– (2)

Y / 2 = 0 &&

Y % 2 = 1 &&

Y <> 0

– (1)

– Test Case: Y = 1

– The input domain is bounded by the accumulated conditions.

int power(int x, int y)
z = 1 ;

y % 2 == 1

While

 y != 0

y = y / 2 ;

 x = x * x ;

z = z * x ;

return z ;

T

T

1

2 3

4

5
6

 Testing

 Computer Science Dept Va Tech Aug., 2001 ©2001 Barnette ND, McQuain WD

21 Testing Reliability

Question:

– When to stop testing?

Answer:

– When no more errors exist. Impossible to ascertain.

– (1) How reliable is the set of test cases?

† Data Domain

– (2) How reliable is the software being developed?

† Time Domain

– Time Domain Reliability

 MTBF : mean time between failures

 MTTF : mean time to failure

 MTTR: mean time to repair

 MTBF = MTTF + MTTR

 Availability = MTTF / (MTTF + MTTR) * 100

 Estimate Methods:

 1. Predictions based on calendar time

 2. Predictions based on CPU time

RELIABILITY

Data

Domain

Time

Domain

Coverage

Mutation Analysis

Error Seeding

Shooman

Jelinski-Moranda

Musa

 Testing

 Computer Science Dept Va Tech Aug., 2001 ©2001 Barnette ND, McQuain WD

22 Mutation Analysis

 The purpose of Mutation Analysis is to test the test suite.

 Original Mutant

– Mutate Code to determine the adequacy of the test data.

– Determines whether all deliberately introduced (mutant) errors are

detected by the original test cases.

 Testing

 Computer Science Dept Va Tech Aug., 2001 ©2001 Barnette ND, McQuain WD

23 Mutation Analysis Process

Mutation

Testing

Diagram

Mutation Testing Process

– 1. Program P is executed

 for test case T

– 2. If errors occur test case T

 has succeeded

 Errors are corrected & retested until

 no errors with test case T are observed.

– 3. Program is Mutated P’

– 4. Mutant P’ is executed for test case T

 IF no errors are found {

 test case T is inadequate;

 further testing is required;

 // ERROR SEEDING

 new test cases are added & step 3 is

 repeated until all mutations are

 discovered; entire process is started

 again at step 1 with the new test cases

 ELSE // all mutations located by tests T

 T is adequate and no further testing is required.

PROGRAM

Mutations

Testing

Test

Cases

Expand

Test

Cases

all

Mutations

discovered?

Testing

complete

Yes

No

 Testing

 Computer Science Dept Va Tech Aug., 2001 ©2001 Barnette ND, McQuain WD

24 Error Seeding

Error Scattergram Graph

Technique

– Estimate of the number of original undiscovered errors remaining
in a system.

1. Intentionally introduce (seed) errors into the source code.

2. Execute test cases upon source code.

3. Count the number of seeded errors & original errors
(unseeded errors) discovered.

4. Estimate the total number of original errors

(mutations)

 Testing

 Computer Science Dept Va Tech Aug., 2001 ©2001 Barnette ND, McQuain WD

25 Error Seeding Process

Testing Subset

• Assume there are N undiscovered errors present in the system.

• Add S seeded errors to the system.

 Test cases discover:

 T seeded errors

 T nonseeded (original) errors

 Hypothesis:

 Test Efficiency:

 E = fraction of discovered errors

S

N

Ts/S =

