
Recursion 

 Intro Problem Solving in Computer Science CS@VT ©20112 Barnette, McQuain 

Definitions 1 

Recursion 

• see Recursion 

• a process in which the result of each repetition is dependent upon the result of 

the next repetition. 

• Simplifies program structure at a cost of function calls 
  

Hofstadter's Law 
“It always takes longer than you expect, even when you take into account Hofstadter's Law.” 

 

Sesquipedalian 
a person who uses words like sesquipedalian. 

Yogi Berra 
“Its déjà vu all over again.” 



Recursion 

 Intro Problem Solving in Computer Science CS@VT ©20112 Barnette, McQuain 

Extended Pseudo-code 2 

To express recursive algorithms, we need to extend the pseudo-code notation to incorporate 

the notion of an interface to an algorithm: 

algorithm  <name> takes <list of inputs> 

For some recursive algorithms we need to express algorithm completion communication: 

We must also be able to express the invocation of an algorithm: 

<name> ( <list of input values to algorithm> ) 

return ( <single output value from the algorithm> ) 



Recursion 

 Intro Problem Solving in Computer Science CS@VT ©20112 Barnette, McQuain 

Tail Recursion 3 

Tail Recursion:    working from the beginning towards the end. 

# X       list of integers to be summed 

# Start   start summing at this index . . . 

# Stop    . . . and stop summing at this index 

# Pre: X is a list of integers,  

       Start & Stop are valid list indexes 

 

algorithm SumArray takes list number X, number Start, number Stop  

 

   if (Start = Stop)                   # base case 

      return X[Stop] 

   else                                # recursion 

      return (X[Start] + SumArray(X, Start + 1, Stop)) 

   endif 

    

 



Recursion 

 Intro Problem Solving in Computer Science CS@VT ©20112 Barnette, McQuain 

Recursive Array Summation Trace 4 

The invocation: 

List number x 

x := [37, 14, 22, 42, 19] 

display SumArray( X, 1, 5) 

 

would result in the recursive trace: 

 
                                         # return values: 

SumArray(X, 1, 5)                        #  134 

 

   return(X[1]+SumArray(X,2,5))          #  37 + 97 

 

      return(X[2]+SumArray(X,3,5))       #  14 + 83 

 

         return(X[3]+SumArray(X,4,5) )   #  22 + 61 

 

            return(X[4]+SumArray(X,5,5)) #  42 + 19 

 

               return X[5]               #  19 



Recursion 

 Intro Problem Solving in Computer Science CS@VT ©20112 Barnette, McQuain 

Head Recursion 5 

Head Recursion: working from the end towards the front. 

# X       list of integers to be summed 

# Start   stop summing at this index . . . 

# Stop    . . . and start summing at this index 

# Pre: X is a list of integers,  

       Start & Stop are valid list indexes 

 

algorithm SumArray2 takes list number X, number Start, number Stop  

 

   if (Start = Stop)                   # base case 

      return X[Stop] 

   else                                # recursion 

      return (X[Stop] + SumArray(X, Start, Stop-1)) 

   endif 

    

 



Recursion 

 Intro Problem Solving in Computer Science CS@VT ©20112 Barnette, McQuain 

Recursive Array Summation2 Trace 6 

The invocation: 

List number x 

x := [37, 14, 22, 42, 19] 

display SumArray2( X, 1, 5) 

 

would result in the recursive trace: 

 
                                         # return values: 

SumArray2(X, 1, 5)                        #  134 

 

   return(X[5]+SumArray2(X,1,4))          #  19 + 115 

 

      return(X[4]+SumArray2(X,1,3))       #  42 + 73 

 

         return(X[3]+SumArray2(X,1,2) )   #  22 + 51 

 

            return(X[2]+SumArray2(X,1,1)) #  14 + 37 

 

               return X[1]                #  37 



Recursion 

 Intro Problem Solving in Computer Science CS@VT ©20112 Barnette, McQuain 

Middle Decomposition 7 

Middle Recursion: working from middle towards both ends. 

# X       list of integers to be searched 

# Find    integer to be located 

# Start   start searching at this index . . . 

# Stop    . . . and stop searching at this index 

# Pre: X is an ascending ordered list of integers,  

#      Find is an integer, Start & Stop are valid list indexes 

algorithm BinarySearch takes list number X , number Find,  

          number Start, number Stop  

   if (Start > Stop)  # base case, value not found 

      return -1 

   endif 

 

   number mid := trunc( (Start + Stop) / 2 ) 

   if (Find = list[mid])  # base case 

      return mid 

   endif 

   if (Find < list[mid])  # search lower half 

     return BinarySearch(X, Find, Start, mid-1) 

   else       # search upper half  

      return BinarySearch(X, Find, mid+1, Stop) 

   endif 



Recursion 

 Intro Problem Solving in Computer Science CS@VT ©20112 Barnette, McQuain 

Edges & Center Decomposition 8 

Edges & Center Recursion: working from both ends towards the middle. 

Problem:  

– sort a subset, (m:n), of an  array of integers (ascending order) 

Solution: 

– Find the smallest and largest values in the subset of the array (m:n) and 

swap the smallest with the mth element and swap the largest with the nth 

element, (i.e. order the edges). 

– Sort the center of the array (m+1: n-1)  

Solution Trace: 
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] 

56 23 66  44 78 99 30 82 17 36  unsorted list 

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] 

17 23 66 44 78 36 30 82 56 99  after call#1 

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] 

17 23 30 44 56 36 66 78 82 99  after call#3 

m n 

• 

• 

• 

Variation of the 

“selection” sort 

algorithm 



Recursion 

 Intro Problem Solving in Computer Science CS@VT ©20112 Barnette, McQuain 

Recursive Sorting 9 

# ray     list of integers to be sorted 

# Start   start sorting at this index . . . 

# Stop    . . . and stop sorting at this index 

# Pre: ray is a list of integers,  

#      Start & Stop are valid list indexes 

 

algorithm DuplexSelection takes list number ray,  

          number Start, number Stop  

    

  if (Start < Stop)  #start=stop -> only 1 elem to sort 

     number mini := FindMinNumIndex(ray, Start, Stop) 

     number maxi := FindMaxNumIndex(ray, Start, Stop) 

     SwapEdges( ray, Start, Stop, mini, maxi) 

     DuplexSelection( ray, start+1, stop-1 ) 

  endif 

Alternatively, the calls to the Find functions can be replaced by a single loop through the 

list to locate the minimum and maximum indexes. 



Recursion 

 Intro Problem Solving in Computer Science CS@VT ©20112 Barnette, McQuain 

Recursive Sorting; SwapEdges 10 

# ray     list of integers 

# Start   left element index  

# Stop    right element index 

# mini    index for left swapping 

# maxi    index for rightswapping 

# Pre: ray is a list of integers,  

#      Start, Stop mini, maxi are valid list indexes 

 

algorithm SwapEdges takes list number ray,  

          number Start, number Stop, number mini, number maxi 

  #check for double swap interference   

  if ( (mini=Stop) and (maxi=Start) ) #double interference  

     Swap( ray, Start, Stop ) 

  else if (maxi=Start) #low 1/2 interference 

         Swap( ray, maxi, Stop )      

         Swap( ray, mini, Start )      

       else #(mini=Stop) or no interference 

          Swap( ray, mini, Start ) 

          Swap( ray, maxi, Stop )      

       endif 

  endif 



Recursion 

 Intro Problem Solving in Computer Science CS@VT ©20112 Barnette, McQuain 

Package Shipping Problem 

 USPS, FedEx, UPS, DHL, etc. 

– Consider the problem that package shipping companies face: 

–  Problem constraints involve:  

 Priority 

 Volume/space : packages/vehicle 

 Weight: packages/vehicle 

 Destination, etc.  

– What if you were hired to write a program to determine which packages should be 

shipped on a vehicle? 

 Simplify 

– When tackling a complex problem, begin by eliminating constraints to focus upon 

a simpler form of the problem. Then add constraints incrementally to your base 

solution. 

 For the package problem eliminate all constraints except weight.  

 Do not deal with determining exactly which packages will go on the vehicle.  

 Ignore possible multiple solutions.   

 If an exact solution does not exist, add code for “near” solutions later.  

 The problem simplifies to determining if a subset of a set of values exists that sums to 

a given total. 

 

 

 

11 



Recursion 

 Intro Problem Solving in Computer Science CS@VT ©20112 Barnette, McQuain 

Greedy 12 

Greedy Recursion: try every possible solution. 

 

Greedy Algorithms involve backtracking. When a possible case has been determined to 

not be a solution previous work to reach the test for the case will need to be undone.  

Knapsack Problem (very weak form) 

Given an integer total, and an integer list, determine if any collection of 

list elements within a subset of the list sum up to total.  

 

Algorithm 

Check if a collection exists containing the first subset element,  

(i.e. does collection exist for the remaining elements in the list for the  

total reduced by the first element)? 

 

If no collection exists containing the first subset element check for a 

collection for total from subset start + 1 to the end of the subset. 

 
 

 



Recursion 

 Intro Problem Solving in Computer Science CS@VT ©20112 Barnette, McQuain 

Knapsack Problem 13 

# ray     list of integers 

# Sum     Subset sum goal 

# Start   First subset index 

# End    Last subset index 

# Pre:    ray is a list of positive integers,  

#         Sum is a positive integer  

#         Start, End are valid list indexes 

algorithm KnapSack takes list number ray,  

          number Sum, number Start, number End 

   

  if ( Sum=0 ) #empty collection sums to zero  

     return true 

  endif 

  if ( (Sum<0) or (Start > End) ) #no soln 

     return false    

  endif   

  #check for soln with first element 

  if (KnapSack(ray, Sum-ray[Start], Start+1, End) )  

     return true 

  endif 

  #any possible soln cannot contain first element 

  return KnapSack(ray, Sum, Start+1, End) 


