
Recursion

 Intro Problem Solving in Computer Science CS@VT ©2011 McQuain

Recursion 1

Around the year 1900 the illustration of the

"nurse" appeared on Droste's cocoa tins.

This is most probably invented by the

commercial artist Jan (Johannes) Musset, who

had been inspired by a pastel of the Swiss

painter Jean Etienne Liotard, La serveuse de

chocolat, also known as La belle chocolatière.

The illustration indicated the wholesome effect

of chocolate milk and became inextricably

bound with the name Droste.

 - Wikipedia Commons

Recursion

 Intro Problem Solving in Computer Science CS@VT ©2011 McQuain

Recursive Definitions 2

recursion a method of defining functions in which the function being defined is

applied within its own definition

1 0
()

(1) 0

n
factorial n

n factorial n n

factorial(5) = 5 * factorial(4)

 = 5 * (4 * factorial(3))

 = 5 * (4 * (3 * factorial(2)))

 = 5 * (4 * (3 * (2 * factorial(1))))

 = 5 * (4 * (3 * (2 * 1)))

 = 120

Recursion

 Intro Problem Solving in Computer Science CS@VT ©2011 McQuain

Recursive Definitions 3

1 0,1
()

(1) (2) 1

n
fibonacci n

fibonacci n fibonacci n n

fibonacci(4) = fibonacci(3) + fibonacci(2)

 = fibonacci(2) + fibonacci(1) +

 fibonacci(1) + fibonacci(0)

 = fibonacci(1) + fibonacci(0) +

 fibonacci(1) + fibonacci(1) + fibonacci(0)

 = 1 + 1 + 1 + 1 + 1

 = 5

Recursion

 Intro Problem Solving in Computer Science CS@VT ©2011 McQuain

Recursion Necessities 4

Every recursive algorithm must possess:

 - a base case in which no recursion occurs

 - a recursive case

There must be a logical guarantee that the base case is eventually reached, otherwise the

recursion will not cease and we will have an infinite recursive descent.

Recursive algorithms may compute a value, or not.

Recursion

 Intro Problem Solving in Computer Science CS@VT ©2011 McQuain

Extended Pseudo-code 5

To express recursive algorithms, we need to extend the pseudo-code notation to incorporate

the notion of an interface to an algorithm:

algorithm <name> takes <list of inputs>

algorithm XtoN takes number X, number N

Computes the value of X^N.

Pre: X, N are integers, N >= 0.

 number XtoN # result

 . . .

 display XtoN # report result

 halt

For example:

Recursion

 Intro Problem Solving in Computer Science CS@VT ©2011 McQuain

Extended Pseudo-code 6

We must also be able to express the invocation of an algorithm:

<name> (<list of input values to algorithm>)

For example: algorithm fiboN takes number N

Computes the value of the N-th Fibonacci number.

Pre: N is a non-negative integer.

 if N < 2 # base case

 display 1

 endif

 display fiboN(N-1) + fiboN(N-2) # recursive case

 halt

Recursion

 Intro Problem Solving in Computer Science CS@VT ©2011 McQuain

Printing a Large Integer 7

Very large integers are (somewhat) easier to read if they are not simply printed as a

sequence of digits:

12345678901234567890 vs 12,345,678,901,234,567,890

How can we do this efficiently? The basic difficulty is that printing proceeds from left to

right, and the number of digits that should precede the left-most comma depends on the

total number of digits in the number.

Here's an idea; let N be the integer to be printed, then:

 if N has no more than 3 digits, just print it normally

 otherwise

 print all but the last 3 digits

 print a comma followed by the last 3 digits

Recursion

 Intro Problem Solving in Computer Science CS@VT ©2011 McQuain

Printing a Large Integer 8

algorithm printWithCommas takes number N

Prints N with usual comma-separation.

Pre: N is an integer.

 if N < 0 # handle negative sign, if necessary

 display '-'

 N := -N

 endif

 if (N < 1000) # base case

 display N

 else

 printWithCommas(N / 1000) # integer division!

 display ','

 display N % 1000 with 0's for padding

 endif

 halt

Recursion

 Intro Problem Solving in Computer Science CS@VT ©2011 McQuain

Recursion vs Iteration 9

It is a mathematical theorem that any recursive algorithm can be expressed without

recursion by using iteration, and perhaps some auxiliary storage.

The transformation from recursion to iteration may be simple or very difficult.

algorithm facN takes number N

Computes the value of N!.

Pre: N is a non-negative integer.

 if N < 2 # base case

 display 1

 endif

 display N * facN(N-1) # recursive case

 halt

algorithm facN takes number N

Computes the value of N!.

Pre: N is a non-negative integer.

 number Fac # result

 Fac := 1

 while N > 0

 Fac := N * Fac

 N := N - 1

 enwhile

 display Fac

 halt

Recursion

 Intro Problem Solving in Computer Science CS@VT ©2011 McQuain

Tail Recursion 10

(pure) tail recursion

there is a single recursive call, and when it returns there are no subsequent

computations in the caller

algorithm GCD takes number M, number N

Computes the largest integer that divides both M and N.

Pre: M,N are a non-negative integers, not both 0.

Credit: Euclid

 if N = 0 # base case

 display M

 endif

 display GCD(N, M % N) # recursive case

 halt

Tail-recursive algorithms are particularly easy to transform into an iterative form.

Recursion

 Intro Problem Solving in Computer Science CS@VT ©2011 McQuain

"Near" Tail Recursion 11

"near" tail recursion

there is a single recursive call, and when it returns there are only trivial subsequent

computations in the caller; often called augmenting recursion

algorithm facN takes number N

Computes the value of N!.

Pre: N is a non-negative integer.

 if N < 2 # base case

 display 1

 endif

 display N * facN(N-1) # recursive case

 halt

"Near" tail-recursive algorithms are often easy to transform into an iterative form.

Recursion

 Intro Problem Solving in Computer Science CS@VT ©2011 McQuain

K Queens Problem 12

Given a KxK chessboard, find a way to place K queens on the board so that no queen can

attack another queen.

A queen can move an arbitrary number of squares vertically, horizontally or diagonally.

It's immediately clear that there must be

one queen in every row and one queen in

every column.

Here is one solution:

There are over 4 billion different ways to

drop 8 queens onto an 8x8 board.

It's known that there are exactly 92

distinct solutions to the problem.

Recursion

 Intro Problem Solving in Computer Science CS@VT ©2011 McQuain

X X X

X X X

X X X X

X X X

4 Queens Problem 13

Let's consider a variant on a 4x4 board… how to start?

Let's flag squares that are under attack with Xs, since we

cannot put a queen there.

Let's process the board row by row, from the top down.

Let's start by putting a queen in the first square in row 1:
X X X

X X

X X

X X

Now for row 2… we have two choices, let's try the first one:

Oops… now all the squares in row 3 are under attack, so this

cannot lead to a solution…

Recursion

 Intro Problem Solving in Computer Science CS@VT ©2011 McQuain

X X X

X X X

X X X

X X X

4 Queens Problem 14

What to try next?

Let's backtrack… take back the last move and try a

different one:

OK, now we have possibilities… let's fill the free

square in row 3:

Rats! Now there are no free squares left in row 4.

We can backtrack again, but that means we must now

remove the 2nd and 3rd queens, since we've already

tried all the possibilities for the 2nd one, and then we

must consider a different spot for the 1st one…

X X X

X X X

X X X

X X X X

Recursion

 Intro Problem Solving in Computer Science CS@VT ©2011 McQuain

X X X

X X X

X X

X

4 Queens Problem 15

So, we'll try the 1st queen in column 2:

That leaves just one place for a queen in row 2:
X X X

X X X

X X X

X X

Recursion

 Intro Problem Solving in Computer Science CS@VT ©2011 McQuain

4 Queens Problem 16

And, that leaves just one place for a queen in row 3:
X X X

X X X

X X X

X X X

And, that leaves just one place for a queen in row 4:
X X X

X X X

X X X

X X X

And, we have a solution… now can we deduce an algorithm?

Recursion

 Intro Problem Solving in Computer Science CS@VT ©2011 McQuain

K Queens Problem 17

Let's suppose we have some way to represent a board configuration (size, location of

queens, number of queens, etc.)

K Queens Algorithm

Try_config takes configuration C, number m

 if C contains K queens

 display C

 halt

 endif

 for each square in row m of C

 if square is free

 place a queen in square

 Try_config(C, m + 1) # leads to soln?

 remove queen from square # no, backtrack

 endif

Recursion

 Intro Problem Solving in Computer Science CS@VT ©2011 McQuain

Towers of Hanoi 18

Move one disk at a time

No disk can sit on a smaller disk

Get all disks from pole 1 to pole 3

1 2 3

Algorithm idea:

 Move top n-1 disks to pole 2

 Move bottom disk to pole 3

 Move disks from pole 2 to pole 3

Recursion

 Intro Problem Solving in Computer Science CS@VT ©2011 McQuain

Analyzing Cost 19

How many times must a disk be moved from one pole to another to solve the problem?

Call this hanoi(n) where n is the number of disks; then from the preceding slide we have:

1 1
()

2 (1) 1 1

n
hanoi n

hanoi n n

Hmm… recursion again.

This is an example of a recurrence relation (as are factorial and fibonacci seen earlier).

Now this does indicate that adding one more disk causes the number of disk moves to more

or less double.

Recursion

 Intro Problem Solving in Computer Science CS@VT ©2011 McQuain

Closed-form Solutions 20

But, we'd really like to have a closed-form (non-recursive) formula for hanoi(n) since that

might be faster to evaluate.

Here it is:

For more information on useful techniques for solving recurrence relations, take Math 3134

or CS 4104.

() 2 1nhanoi n

