
pseudo-Language

Intro Problem Solving in Computer ScienceCS@VT ©2011 - 12 McQuain

Expressing Algorithms 1

An algorithm may be expressed in a number of ways:

natural language: usually verbose and ambiguous

flow charts: avoid most (if not all) issues of ambiguity; difficult to

modify w/o specialized tools; largely standardized

pseudo-code: also avoids most issues of ambiguity; vaguely resembles

common elements of programming languages; no

particular agreement on syntax

programming language: tend to require expressing low-level details that are not

necessary for a high-level understanding

pseudo-Language

Intro Problem Solving in Computer ScienceCS@VT ©2011 - 12 McQuain

Common Elements of Algorithms 2

acquire data (input)

some means of reading values from an external source; most algorithms require

data values to define the specific problem (e.g., coefficients of a polynomial)

computation

some means of performing arithmetic computations, comparisons, testing logical

conditions, and so forth...

selection

some means of choosing among two or more possible courses of action, based

upon initial data, user input and/or computed results

iteration

some means of repeatedly executing a collection of instructions, for a fixed

number of times or until some logical condition holds

report results (output)

some means of reporting computed results to the user, or requesting additional

data from the user

pseudo-Language

Intro Problem Solving in Computer ScienceCS@VT ©2011 - 12 McQuain

Simple Variables 3

simple variables

Some means hold a simple value, like the number of elements in a list.

Generally, we do not need to be too careful about the notion of types, but it is

useful to distinguish between variables that hold numbers, character strings, and

logical values.

Variables must be given names and those names should be descriptive. For

readability, we will not allow whitespace in names.

Variables must be declared and given a type before they are used:

number WidthInFeet

string NameOfBook

logical valueWasEven

Logical variables can have the values true and false , which are considered

part of the pseudo-language vocabulary and should not be used as variable

names.

pseudo-Language

Intro Problem Solving in Computer ScienceCS@VT ©2011 - 12 McQuain

List Variables 4

list variables

Some means to refer to a collection of simple values as a unit, and to also refer

to individual values within the collection.

Mathematically we can think of this as a subscripted list.

For convenience we often adopt a slightly different notation;

for a list named Scores, Scores[i] refers to the i-th element in the list;

we number elements starting at 1.

List declarations look like:

list number Scores

list string bookTitles

(We don't specify a size for the list, as we would do for an array in most

programming languages… that's not necessary for stating an algorithm.)

pseudo-Language

Intro Problem Solving in Computer ScienceCS@VT ©2011 - 12 McQuain

pseudo-Language: the Basics 5

acquiring data

get <variable>

Obtain a value for the specified variable; no source is specified; this could stand for

reading from a file or other device, or even for prompting a user for interactive input.

reporting results

display <variable>

Report the value of the variable in some manner; no destination is specified; this

could stand for returning a value from the algorithm, for writing to a file or other
device, or for displaying to a console window.

pseudo-Language

Intro Problem Solving in Computer ScienceCS@VT ©2011 - 12 McQuain

pseudo-Language: the Basics 6

computation

Use common mathematical notation, slightly adjusted to reflect keyboard limitations.

Any common mathematical and logical expressions can be formed using:

+, - addition, subtraction

* , / multiplication, division

^ exponentiation, e.g, x^y means x to the power y

NOT, ! logical negation

AND, && logical and

OR, || logical or

(,) grouping

The default precedence is defined by the ordering above (low to high precedence).

When in doubt, add parenthesis for clarity.

pseudo-Language

Intro Problem Solving in Computer ScienceCS@VT ©2011 - 12 McQuain

pseudo-Language: the Basics 7

computation (continued)

In addition, any standard mathematical functions can be used, with suitable notation:

| x – y |

sin(theta)

Since the basic precedence rules cannot cover all such cases, if there's any doubt

about clarity, use parentheses to disambiguate.

For setting the value of a variable from an expression, we will use

<variable> := <expression>

pseudo-Language

Intro Problem Solving in Computer ScienceCS@VT ©2011 - 12 McQuain

pseudo-Language: Precedence Rules 8

We must have some definition of the order of operations, unless we want to write lots of

parentheses. The ordering used here is slightly adapted from the precedence rules for the

C language:

highest

(,) grouping

NOT, ! logical negation

^ exponentiation

* , / multiplication, division (parenthesize if both are chained)

+, - addition, subtraction (parenthesize if both are chained)

AND, && logical and

OR, || logical or

lowest

Remember, when in doubt, add parenthesis for clarity.

pseudo-Language

Intro Problem Solving in Computer ScienceCS@VT ©2011 - 12 McQuain

pseudo-Language: Other Issues 9

comments

In many cases, it is useful to add comments to the (human) reader;

there must be some way to distinguish comments from the algorithm itself;

we'll use the convention that anything following the symbol '#' on a line is a

comment

halting the algorithm

halt

Means "stop now".

May be used at any point within the algorithm.

pseudo-Language

Intro Problem Solving in Computer ScienceCS@VT ©2011 - 12 McQuain

Algorithm Interface 10

To refer to algorithms, and especially to refer to one algorithm from another, we need to

incorporate the notion of an interface to an algorithm:

algorithm <name> takes <list of inputs>

algorithm XtoN takes number X, number N

Computes the value of X^N.
Pre: X is a number, N is an integer, N >= 0.
#

number XtoN # result

. . .
display XtoN # report result
halt

For example:

pseudo-Language

Intro Problem Solving in Computer ScienceCS@VT ©2011 - 12 McQuain

Algorithm Invocation 11

We must also be able to express the invocation of an algorithm:

<name> (<list of input values to algorithm>)

For example:

algorithm FutureValue takes number PV, # present value
number Rate, # annual pct rate
number Years # term

Computes the future value of an asset, assuming
annual compounding of a given rate of return.
Pre: PV and Rate are non-negative numbers.
Years is a non-negative integer.
#

number FV # future value
number ScalingFactor # growth factor

ScalingFactor := XtoN(1 + Rate, Years) # invoke algo rithm XtoN
FV := PV * ScalingFactor

display FV
halt

pseudo-Language

Intro Problem Solving in Computer ScienceCS@VT ©2011 - 12 McQuain

pseudo-Language: Selection 12

selection

if <condition>

one or more statements

endif

if <condition>

one or more statements

else

one or more statements

endif

A condition may be an algebraic comparison of two variables, such as

numberOfZeros < 100

or a logical concept, such as

haveNotSeenAZero

pseudo-Language

Intro Problem Solving in Computer ScienceCS@VT ©2011 - 12 McQuain

pseudo-Language: Selection Examples 13

if x <= y

diff = y - x

endif

if x <= y

diff = y - x

else

diff = x - y

endif

pseudo-Language

Intro Problem Solving in Computer ScienceCS@VT ©2011 - 12 McQuain

pseudo-Language: Iteration 14

iteration

while <condition>

one or more statements

endwhile

pseudo-Language

Intro Problem Solving in Computer ScienceCS@VT ©2011 - 12 McQuain

pseudo-Language: Iteration Examples 15

while x <= y

x := 2 * x

endwhile

while y >= 0

if (x > y)

display iter

halt

endif

iter := iter + 1

y := y - x

endwhile # y >= 0

