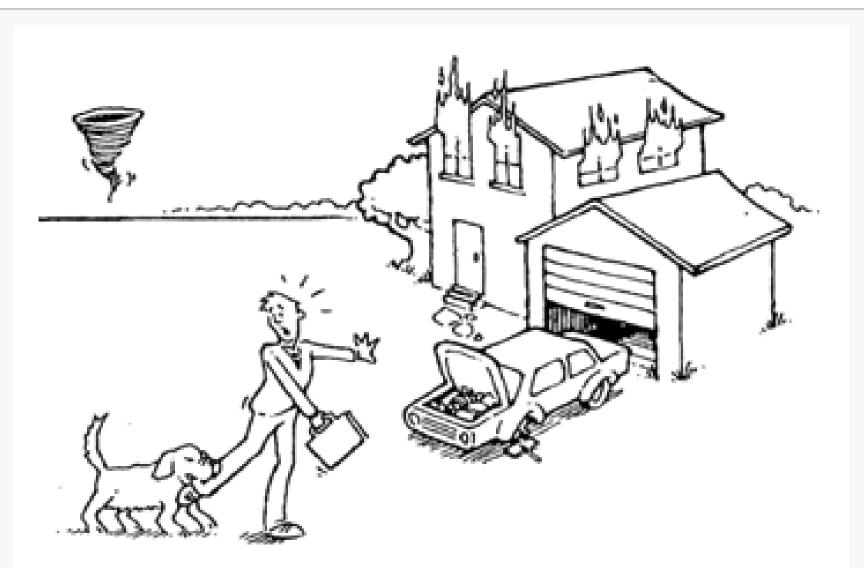
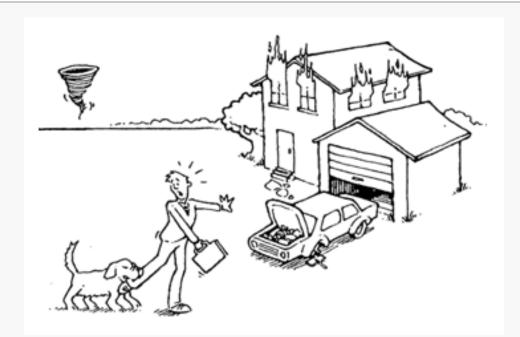

Deciding the Course of Action

Assume we have managed to define a collection of real problems, and we have also generated some potential solutions for each of those problems.

Now, we must decide what course of action to follow:

- decide which problem to address first
- decide which actions to take vs this problem
- select the best solution from our possible alternatives
- decide how to avoid additional problems as we implement our chosen solution




Deciding the Priority for each Problem

timing How urgent is the problem?

What is the problem's potential for growth? trend

impact How serious is the problem?

Problem	Timing (H,M,L)	Trend (H,M,L)	Impact (H,M,L)	Next Process
1. Get dog off leg				
2. Repair car				
3. Put out fire.				
4. Protect contents of briefcase				
5. Prepare for tornado				

Problem	Timing (H,M,L)	Trend (H,M,L)	Impact (H,M,L)	Next Process
1. Get dog off leg	Н	Н	Н	DA
2. Repair car				
3. Put out fire.				
4. Protect contents of briefcase				
5. Prepare for tornado				

1. Get dog off leg:

Timing: Must do this NOW --- high!

Trend: Wounds are getting worse --- high!

Impact: Can't do anything else before this is accomplished --- high!

Next: Decision Analysis --- how does he accomplish this?

Problem	Timing (H,M,L)	Trend (H,M,L)	Impact (H,M,L)	Next Process
1. Get dog off leg	Н	Н	Н	DA
2. Repair car	L	L	М	PA
3. Put out fire.				
4. Protect contents of briefcase				
5. Prepare for tornado				

2. Repair car:

Timing: This can wait --- low

Trend: It isn't getting any worse --- low

Impact: Might impact my job --- moderate

Next: Problem Analysis --- what's wrong with the car?

Problem	Timing (H,M,L)	Trend (H,M,L)	Impact (H,M,L)	Next Process
1. Get dog off leg	Н	Н	Н	DA
2. Repair car	L	L	М	PA
3. Put out fire.	Н	Н	Н	DA
4. Protect contents of briefcase				
5. Prepare for tornado				

3. Put out fire:

Timing: high

Trend: high

high Impact:

Next: Decision Analysis --- use hose?

call fire department?

evacuate house?

Problem	Timing (H,M,L)	Trend (H,M,L)	Impact (H,M,L)	Next Process
1. Get dog off leg	Н	Н	Н	DA
2. Repair car	L	L	М	PA
3. Put out fire.	Н	Н	Н	DA
4. Protect contents of briefcase	М	M	Н	PPA
5. Prepare for tornado				

4. Protect contents of briefcase:

moderate --- can't do it before dealing with dog, Timing:

less important than putting out the fire

Trend: moderate --- not currently getting worse

high --- don't want to lose work and affect job performance Impact:

Next: Potential Problem Analysis

Problem	Timing (H,M,L)	Trend (H,M,L)	Impact (H,M,L)	Next Process
1. Get dog off leg	Н	Н	Н	DA
2. Repair car	L	L	М	PA
3. Put out fire.	Н	Н	Н	DA
4. Protect contents of briefcase	М	М	Н	PPA
5. Prepare for tornado	М	Н	Н	DA/PPA

5. Prepare for tornado:

Timing: moderate --- don't know it's headed this way (yet)

Trend: high --- unknown, but this is vital information

Impact: high --- don't want to die

Decision Analysis or Potential Problem Analysis Next:

Problem	Timing (H,M,L)	Trend (H,M,L)	Impact (H,M,L)	Next Process
1. Get dog off leg	Н	Н	Η	DA
2. Repair car	L	L	М	PA
3. Put out fire.	Н	Н	Н	DA
4. Protect contents of briefcase	М	М	Н	PPA
5. Prepare for tornado	М	Н	Н	DA/PPA

So, what's the prioritized ranking of the problems?

Two problems have three H ratings.

Compare the two problems in each category...

... dog wins on impact and probably on trend as well

After that, it would seem we'd rank them in the order 5, then 4 and then 2.

K.T. Decision Analysis

- Write a concise decision statement about what it is we want to decide.
 - Use first four problem-solving steps to gather information.
- 2. Specify objectives of the decision, and divide into **musts** and **wants**.
 - Rank wants: most important to least important.
- 3. Evaluate each alternative against the musts:
 - "go" vs. "no go", (ignore "no go" alternatives).
- 4. Give a weight (1-10) for each want to indicate importance.
 - Pairwise comparison can help with relative weights.
- 5. Evaluate each alternative against wants and assign rating (1-10) indicating how well it satisfies each want.
- 6. Score each alternative: multiply want rank by alternative rating and sum the scores for each alternative.
- 7. Select alternative with highest score.

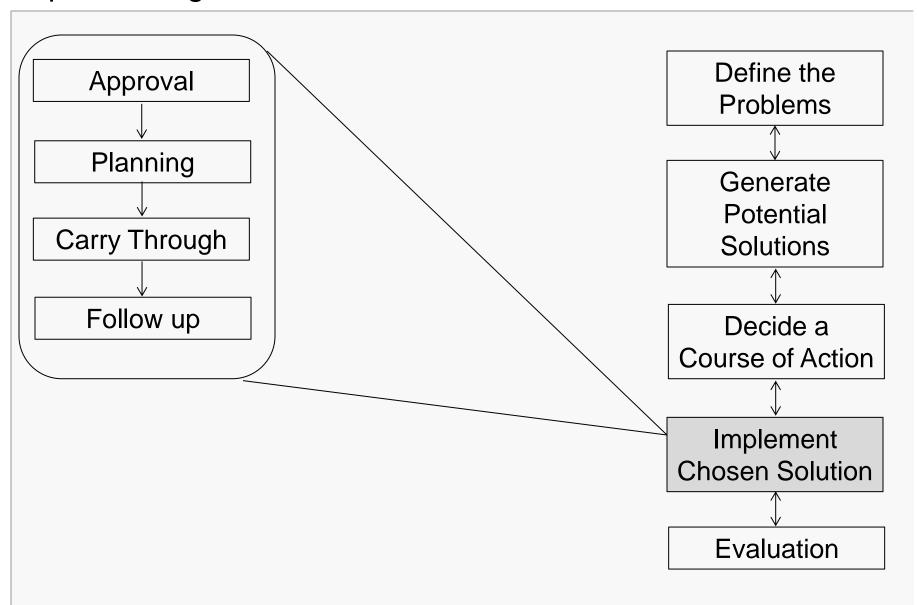
K.T. DA Example

Alternative		Distract dog with food	Pry dog's jaws open	Stun dog, then confine him
Musts	Quick	go	go	go
	Have means	no go	go	go

K.T. DA Example

Alternative			y dog's jaws Stun dog, the open confine him		•		
Musts	Quick Have means	go go		_			go
Wants	Weight	Rating	Rating Score		Score		
Painless to me Painless to dog Keep pants	8 2 5	3 24 7 14 7 35		9 1 8	72 2 40		
			73		114		

Analyse potential solutions to see if there are potential problems that could arise.

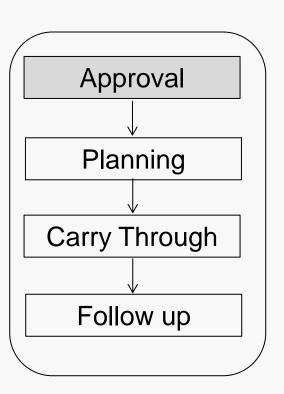

Ones not analysed in prior steps.

Particularly appropriate for analysing safety issues and avoiding terrible outcomes.

K.T. PPA Example: Buying a Car

Kepner-Tregoe 16

Problem	Possible Cause	Preventive Action	Contingency Plan
Improper alignment	Car in accident	Check alignment	Don't buy
Body condition	Car in accident; body rusted out	Inspect body for rust	Offer lower price
	Car in flood	Check for mold/ hidden rust	Offer lower price
Suspension problems	Hard use, poor maintenance	Check tires	Require fixes
Leaking fluids	Poor maintenance	Inspect	Require fixes
Odometer incorrect	Tampering/broken	Look for signs, check title	Offer lower price
Car ready to fall apart	Poor maintenance	Look for signs	Don't buy

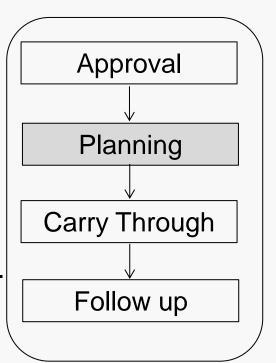

Approval

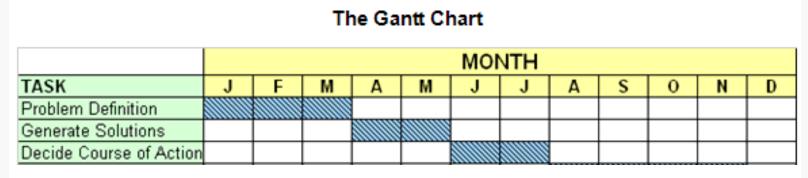
From organization authorities or clients.

Make a proposal

All of the presentation issues apply

Focus on the client's goals




Plan

- What to do
- Order to do
- When to do


Study: resource allocations (time, money, personnel), bottlenecks (critical points), milestones.

- KT situation appraisal
- KT PPA

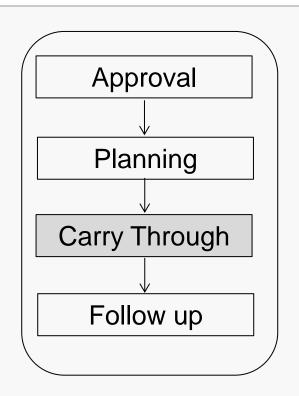
Web Site Development Gantt Chart

The Gantt Chart graphically shows the progression of work required to complete the project.

Gantt chart for allocating resources, time

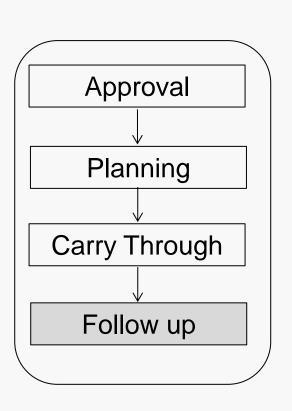
Deployment Chart for the Website Development Project

Task	Team Member				
Lask	Melinda	John	Web Programmer		
Determine needs					
Register site name					
Develop initial layout					
Review with customer					
Develop content and graphics					
Contract with ISP					
Revise and fine tune					
Site goes live					
Followup and update					
Evaluate					


Deployment chart Critical path analysis Allocating/budgeting resources

Carry Through

Actual management of the implementation.


Checklist:

- Estimate what finished project will look like.
- Ensure coordination of tasks and personnel.
- Steadily monitor Gantt Chart, etc.
- ✓ Evaluate each completed step along the way.
- Continue to learn about solution.
- Continue to test assumptions about solution.
- ✓ Test the limits of the solution.
- Carefully plan test simulations.

Monitoring implementation process and adjusting as necessary:

- Following the plan?
- Proceeding on schedule?
- Staying within budget?
- Maintaining quality?
- Relevant to (original? changing?) problem.

Evaluation should be an ongoing process throughout life of the project.

Each phase of the project should have a review to verify that goals of the phase were accomplished.

This might cause adjustments to future plans.

For each decision, carry out a PPA before implementing the solution.

Have you challenged the information and assumptions?

Does the solution solve the real problem?

Is the problem permanently solved? Or is this a patch?

Does the solution have an impact on the problem?

Have all consequences of the solution been considered?

Have you argued both sides, positive and negative?

Has the solution accomplished all that it could?

Is the solution economically efficient and justifiable?

Have the "customers" bought in?

Does solution cause problems (environmental, safety)?

Is it legal? Does it violate the law, or organizational policy?

Is it balanced? Is it fair to all concerned in short and long term? Is it a winwin solution?

How will it make me feel about myself? Will it make me proud? How would I feel if it were published in the newspaper? If my family knew?