
Design Examples 

 Intro Problem Solving in Computer Science CS@VT ©2012 Barnette 

1 Cruise Control 1993 Jeep Cherokee 

Owner’s Manual System Description: 

  

Cruise Control System Interface 

  

When engaged, the electronic cruise control  

device takes over the accelerator operations of  

the vehicle at speeds above 35M/H, (60KM/H).  

The cruise controls are located on the steering  

wheel and consist of the following buttons:  

ON/OFF, RESUME/ACCEL and SET/DECEL.  

  

To Activate – Push the ON/OFF switch. When depressed the cruise control 

system is activated. Push the ON/OFF switch again to raise the button and 

deactivate the cruise control system. 

  

To Set a Desired Speed – When the vehicle has reached the desired cruising 

speed, press and release the SET button to engage the cruise control. Remove 

foot pressure from the accelerator pedal. 



Design Examples 

 Intro Problem Solving in Computer Science CS@VT ©2012 Barnette 

2 Cruise Control 93 Cherokee - manual 

To Deactivate – Softly tap the brake or clutch pedal or stop normally. The 

cruise control will disengage, but will remember the last cruising speed. The 

previous cruising speed will be retained while the cruise control system is ON 

or until the ignition is turned off. 

  

To Resume Speed – To resume the last retained cruising speed, push and 

release the RESUME button. Resume can be used at any speed above 30M/H, 

(50KM/H). 

  

To Vary the Speed Setting – When the cruise control is engaged, speed can 

be increased by pressing and holding the ACCEL button. When the button is 

released, a new set speed will be established. Tapping the ACCEL button once 

will result in a 2 mph speed increase. Each time the ACCEL button is tapped 

speed increases, so tapping it three times will increase speed by 6 mph, etc. To 

decrease speed while the cruise control is engaged, press and hold the DECEL 

button. Release the button when the desired speed is reached, and the new 

speed will be set. 



Design Examples 

 Intro Problem Solving in Computer Science CS@VT ©2012 Barnette 

3 Cruise Control 93 Cherokee - manual 

  

To Accelerate for Passing – Depress the accelerator foot pedal as you would 

normally. When the pedal is released the vehicle will return to the set speed. 

  

Note – When driving uphill, or when heavily loaded the vehicle may slow 

below the set speed. If the vehicle speed drops below 30M/H, (50KM/H) the 

cruise control will automatically disengage. 

 

Warning – leaving the cruise control ON when not in use is dangerous. You 

could accidentally set the system or cause it go faster than desired. Always 

leave the system OFF when you aren’t using it. 



Design Examples 

 Intro Problem Solving in Computer Science CS@VT ©2012 Barnette 

4 Cruise Control 93 Cherokee - Specification 

The automobile computer controller (ACC) system monitors all sensors. It 

communicates readings and signals the appropriate automobile sub-system.   

  

Cruise Control Sub-System Functioning 

  

The ON and OFF actions to the cruise control manager (CCM) sub-system will 

be initiated by the ACC system. The ACC will signal the CCM when any of 

the cruise control buttons have been pressed. Note: when buttons are held 

down the ACC will send a series of signals to the CCM, one after another until 

the button is released. The CCM must interact with the ACC and the fuel sub-

system administrator, (FSA). The current automobile speed is monitored by the 

ACC. The CCM will send the driver’s desired speed (in MPH) to the FSA, 

which regulates fuel flow in accordance with automobile speed. The FSA 

determines the amount of fuel to supply by getting the current speed from the 

ACC. If the current speed drops below 30MPH the FSA halts its fuel flow 

regulation. When the automobile operator depresses the accelerator pedal the 

ACC will inform the CCM to deactivate and when the operator releases the 

accelerator the ACC will inform the CCM to resume.  

 



Design Examples 

 Intro Problem Solving in Computer Science CS@VT ©2012 Barnette 

5 Cruise Control 93 Cherokee - problem 

Task 

 Design the Cruise Control Manager (CCM) software.  The design should 

consist of class relationships and class/method interface(s). The design contain 

description forms for the class and methods  

Class Name  Complex 

Purpose represent a complex number and provide associated 

operations 

States  none 

Constructors Complex(Real = 0.0, Imaginary = 0.0) 

Operations 

       Mutators 

  

       Accessors 

  

setReal, setImaginary, Magnitude, Conjugate, 

+, -, /, *, ==  

  

getReal, getImaginary 

Fields  Real,  

Imaginary 

Sample class description form: 

 



Design Examples 

 Intro Problem Solving in Computer Science CS@VT ©2012 Barnette 

6 Cruise Control 93 Cherokee - problem 

Prototype Complex operator+(Complex rightOperand) 

Purpose to compute the sum of two Complex objects 

 

Data 

received 

right operand of binary expression, 

left operand is the execution scope of the operation 

 

Data 

returned 

 

Complex object representing the sum of the objects 

Remarks Overloaded addition operator is provided to support 

natural coding of expressions involving Complex objects. 

Sample operation description form: 

 



Design Examples 

 Intro Problem Solving in Computer Science CS@VT ©2012 Barnette 

7 CCM Design: data elements 

Initial data element identification: 

  

1. Existence state (ON/OFF) 

 

2. Activation/engage state 

 

3. TempDisengage state (see the PASSING/COASTING service 

discussion) 

 

4. Desired speed of the driver 

 

5. Association link to the fuel sub-system administrator, (FSA)  

 

6. Association link to the ACC - ?   

 



Design Examples 

 Intro Problem Solving in Computer Science CS@VT ©2012 Barnette 

8 CCM Design: data elements 

CCM Data Element Deliberations 

  

Existence state could be omitted if the CCM object is created & destroyed by 

the automobile computer controller (ACC) system whenever the ON/OFF 

buttons are operated.  

 

If the CCM only needs to exist while the cruise control is ON and no other part 

of the system except the ACC needs to request its services then the CCM 

should be aggregated within the ACC. (From the abbreviated specification this 

is most likely the case and an aggregation would be the better design.)  

 

Thus the best design would be not to represent the ON/OFF state, instead 

electing to dynamically aggregate the CCM inside the ACC. 



Design Examples 

 Intro Problem Solving in Computer Science CS@VT ©2012 Barnette 

9 CCM Design: data elements 

CCM Data Element Deliberations 

  

Each of these data elements will correspond to one or more data members.   

 

The desired speed of the driver could be a simple integer or a current/desired 

speed pair, either as separate CCM data members or encapsulated within a sub-

object.   

 

For this design, I opt to not have a distinct class or to represent the current 

speed in the CCM, (which is problematic since the speed will always be 

changing and would thus be inaccurate at most times).  



Design Examples 

 Intro Problem Solving in Computer Science CS@VT ©2012 Barnette 

10 CCM Design: Behaviors 

CCM Responsibilities 

  

It is clear that the CCM is responsible for storing/updating the driver’s desired 

speed and communicating with the ACC and FSA.   

 

Each cruise control interface button action and communication mechanism will 

have a corresponding public member function.   

 

The specification indicates the ACC will signal the CCM when any cruise 

controls buttons are depressed. The three buttons are labeled as dual purpose 

thus an assignment of responsibility as to which CCM service is to be invoked 

when a button is depressed must be made.  

 

One poor design possibility would be to assign this responsibility to the ACC. 

This requires the ACC to know (store) or determine (invoke a CCM state 

reported function) the state of the CCM. This responsibility should be assigned 

to the CCM since it already knows its own state. 



Design Examples 

 Intro Problem Solving in Computer Science CS@VT ©2012 Barnette 

11 CCM Design: Behaviors 

CCM Responsibilities Design 

  

ON: This state, (existence), is handled by the constructor. 

  

OFF: This state, (non-existence), is handled by the destructor. 

 

 



Design Examples 

 Intro Problem Solving in Computer Science CS@VT ©2012 Barnette 

12 CCM Design: Behaviors 

CCM Responsibilities Design:    Set 

  

SET:  

This operation (invoked by the ACC) can be designed in one of two ways, 

(with either no or one parameter).  

 

With no parameter the operation will query the ACC for the current operating 

speed and store it as the driver’s desired speed.  

 

Alternatively the ACC could go ahead and pass the current speed to the SET 

operation.  

 

Either would be an appropriate design. (One could argue that since the ACC 

has responsibility for the current speed that it would be a better design to have 

it go ahead and send it to the CCM for this operation. However, it could also 

be argued that the CCM should request the current speed from the ACC in 

order to obtain the most accurate up-to-date speed.)  

 



Design Examples 

 Intro Problem Solving in Computer Science CS@VT ©2012 Barnette 

13 CCM Design: Behaviors 

CCM Responsibilities Design:    Set  (continued) 

  

The Set operation also has to communicate with the FSA, to invoke its 

automatic fuel regulating flow service, sending it the stored desired speed.  

 

However the current speed is obtained, a valid alternative design would be to 

consider a possible error check for a desired speed that is too low ( < 35MPH).  

 

This might cause some designs to show a link to some alert sub-system to 

warn the driver of an improper speed setting. However, no such hint at an alert 

sub-system is given in the specification thus it would be more appropriate to 

consider this to be handled by using some alert service of the ACC.  

 

Alternatively it can be easily accomplished by making the appropriate member 

functions return a Boolean value. 

 



Design Examples 

 Intro Problem Solving in Computer Science CS@VT ©2012 Barnette 

14 CCM Design: Behaviors 

CCM Responsibilities Design:     

  

DEACTIVATE:  

This operation can employ the link to the FSA to invoke its service to turn off 

its automatic fuel regulating flow (which will be responsible for returning 

speed control to the driver). The service will also toggle the Active/Inactive 

state flag.  

  

RESUME:  

This service can use the link to the FSA to invoke its automatic fuel regulating 

flow service sending it the previously stored desired driver speed. This service 

(like the SET service) could be designed to error check the current speed and 

notify another part of the system if it below the 30 MPH threshold. If included 

in the design the low speed check/notification should be implemented as a 

private operation to prevent duplication and invoked from both the RESUME 

and SET services. 



Design Examples 

 Intro Problem Solving in Computer Science CS@VT ©2012 Barnette 

15 CCM Design: Behaviors 

CCM Responsibilities Design:     

  

ACCEL:  

Each time this service is invoked it will increase the stored desired speed by 2 

MPH and use the link to the FSA to invoke its automatic fuel regulating flow 

service sending it the updated desired speed.  

 

Consider a check of the Active/Inactive flag to determine if the button has 

been pressed while a speed has not been set, which would require the invoking 

of an alert service either of the ACC or some other sub-system.  

  



Design Examples 

 Intro Problem Solving in Computer Science CS@VT ©2012 Barnette 

16 CCM Design: Behaviors 

CCM Responsibilities Design:     

  

DECEL: (possible inverse of the ACCEL service) 

The specification of the exact effect of DECEL is incomplete. It is named in 

the interface as an inverse operation.)  

 

Each time this service is invoked it will decrease the stored desired speed by 

two, (one would also be appropriate since the interface and spec does not give 

complete DECEL details), and use the link to the FSA to invoke its automatic 

fuel regulating flow service sending it the updated desired speed.  

 

Consider a check of the Active/Inactive flag to determine if the button has 

been pressed while a speed has not been set, which would require the invoking 

of an alert service either of the ACC or some other sub-system.  



Design Examples 

 Intro Problem Solving in Computer Science CS@VT ©2012 Barnette 

17 CCM Design: Behaviors 

CCM Responsibilities Design:     

  

PASSING:  

According to the interface, this service is necessary to temporarily 

deactivate/disengage the CCM while passing.  

 

The possibility exists that the ACC may invoke the service unnecessarily or 

incorrectly. The service would need to check its active/engage state to 

determine if it should ignore the service request.   

 

In fully considering this service it should be apparent that an inverse to this 

service is needed. In a rolling hilly terrain the ACC may request multiple 

PASSING/COASTING services as the driver repeatedly accelerates/coasts 

up/down hills.  

 

This service should change the TempDisengage state to indicate that passing is 

occurring. 

   



Design Examples 

 Intro Problem Solving in Computer Science CS@VT ©2012 Barnette 

18 CCM Design: Behaviors 

CCM Responsibilities Design:     

  

COASTING:  

While not present in the interface, this service is necessary to re-activate/re-

engage the CCM after passing has occurred.  

 

The same possibility exists that the ACC may invoke the service unnecessarily. 

The service would simply need to check its TempDisengage state to determine 

if it should ignore the service request. 

  

   



Design Examples 

 Intro Problem Solving in Computer Science CS@VT ©2012 Barnette 

19 CCM Class Relationships 

Engage  

TempDisengage 

DesiredSpeed 

reference2FSA 

reference2ACC 

 

Resume_Accel 

Set_Decel 

SetSpeed 

Deactivate 

Resume 

Accel 

Decel 

Passing 

Coasting 

CruiseSpeed 

FSA 

1 

                  ACC 

CCM 

1 



Design Examples 

 Intro Problem Solving in Computer Science CS@VT ©2012 Barnette 

20 CCM Design: 

CCM Class details:     

Class Name CCM 

Purpose  To store/update the driver’s desired speed and  

  communicating with the ACC and FSA. 

States  Engage, TempDisengage 

Constructors CCM() 

Operations 

     Mutators Resume_Accel, Set_Decel, SetSpeed, Deactivate, 

Resume,  

  Accel, Decel, Passing, Coasting 

 

    Accessors CruiseSpeed(), None 

 

 

Fields  Engage, TempDisengage, DesiredSpeed,  

  reference2FSA, reference2ACC 

 



Design Examples 

 Intro Problem Solving in Computer Science CS@VT ©2012 Barnette 

21 CCM Design: 

CCM Class method details:     

Prototype CCM() 

 

Purpose construct a default CCM object 

 

Data received References to the FSA & ACC 

 

Data returned none 

 

Remarks Constructs a CCM object, setting the Engage 

field to false, TempDisengage to false, DesiredSpeed to 0, and 

setting the FSA & ACC links to the passed pointers. 



Design Examples 

 Intro Problem Solving in Computer Science CS@VT ©2012 Barnette 

22 CCM Design: 

CCM Class method details:     

Prototype Resume_Accel() 

 

Purpose Invoke Resume or Accel private member function 

 

Data received none 

 

Data returned none 

 

Remarks Invoked when user hits RESUME/ACCEL button. 

This service checks the Engage state. If engaged (true) it invokes 

Accel(), otherwise it invokes Resume(). 



Design Examples 

 Intro Problem Solving in Computer Science CS@VT ©2012 Barnette 

23 CCM Design: 

CCM Class method details:     

Prototype SetDecel(int speed) 

 

Purpose Invoke the Set or Decel private member function 

 

Data received a non-negative integer vehicle speed 

 

Data returned none 

 

Remarks Invoked when user hits SET/DECEL button. This 

service checks the Engage state. If engaged (true) it invokes 

Decel(speed), otherwise it invokes Set(). 



Design Examples 

 Intro Problem Solving in Computer Science CS@VT ©2012 Barnette 

24 CCM Design: 

CCM Class method details:     

Prototype SetSpeed(int speed) 

 

Purpose Store the desired cruising speed,  

  invoking the FSA FuelControl service. 

 

Data received a non-negative integer vehicle speed 

 

Data returned Boolean value indicating success or failure 

 

Remarks If speed is < 35 Set performs no action returns 

false Else it sets DesiredSpeed = speed, Engage=true and invokes 

the FSA -> FuelControl(speed) service, returns true. 



Design Examples 

 Intro Problem Solving in Computer Science CS@VT ©2012 Barnette 

25 CCM Design: 

CCM Class method details:     

Prototype Deactivate() 

 

Purpose Disengages the Cruise Control 

 

Data received none 

 

Data returned none 

 

Remarks Sets Engage=false and invokes the FSA ->  

  HaltControl() service. 



Design Examples 

 Intro Problem Solving in Computer Science CS@VT ©2012 Barnette 

26 CCM Design: 

CCM Class method details:     

Prototype Resume() 

 

Purpose Re-engage the Cruise Control with stored speed. 

 

Data received none 

 

Data returned Boolean value indicating success or failure 

 

Remarks If ACC->currentspeed() service returns < 30 

Resume performs no action, returns false 

Else it sets Engage=true and invokes the FSA -> 

FuelControl(DesiredSpeed) sevice, returns true. 



Design Examples 

 Intro Problem Solving in Computer Science CS@VT ©2012 Barnette 

27 CCM Design: 

CCM Class method details:     

Prototype Accel() 

 

Purpose To increase vehicle by 2 MPH each time invoked. 

 

Data received none 

 

Data returned none 

 

Remarks It adds 2 to DesiredSpeed, and invokes the FSA -

> FuelControl(DesiredSpeed) service 



Design Examples 

 Intro Problem Solving in Computer Science CS@VT ©2012 Barnette 

28 CCM Design: 

CCM Class method details:     

Prototype Decel() 

 

Purpose To decrease vehicle by 2 MPH each time invoked. 

 

Data received none 

 

Data returned none 

 

Remarks It subtracts 2 from DesiredSpeed, and invokes the 

FSA -> FuelControl(DesiredSpeed) service 



Design Examples 

 Intro Problem Solving in Computer Science CS@VT ©2012 Barnette 

29 CCM Design: 

CCM Class method details:     

Prototype Passing() 

 

Purpose To temporarily disengage the cruise control while  

  passing. 

 

Data received none 

 

Data returned Boolean value indicating success or failure 

 

Remarks This service checks the Engage state. If engaged 

(true) and not temporarily Disengaged(false) it sets 

TempDisengage to true, invokes the FSA -> HaltControl() 

service and returns true else it returns false. 



Design Examples 

 Intro Problem Solving in Computer Science CS@VT ©2012 Barnette 

30 CCM Design: 

CCM Class method details:     

Prototype Coasting() 

 

Purpose To re-engage the cruise control after passing. 

 

Data received none 

 

Data returned none 

 

Remarks This service checks the Engage state. If engaged 

(true) and temporarily Disengaged(true) it sets TempDisengage 

to false, invokes the FSA -> FuelControl(DesiredSpeed) service 

and returns true else it returns false. 



Design Examples 

 Intro Problem Solving in Computer Science CS@VT ©2012 Barnette 

31 CCM Design: 

CCM Class method details:     

Prototype CruiseSpeed() 

 

Purpose To return the stored desired cruising speed. 

 

Data received none 

 

Data returned a non-negative integer speed 

 

Remarks Returns a copy of the DesiredSpeed field. 


