
Inheritance

 OO Software Design and ruction Computer Science Dept Va Tech January 2002 ©2002 McQuain WD & Keller BJ

1 Generalization versus Abstraction

Abstraction: simplify the description of something to those aspects that are

relevant to the problem at hand.

Generalization: find and exploit the common properties in a set of abstractions.

 hierarchy

 polymorphism

 genericity

 patterns

Inheritance

 OO Software Design and ruction Computer Science Dept Va Tech January 2002 ©2002 McQuain WD & Keller BJ

2 Four-Fold Path to Generalization

Hierarchy

Exploitation of an “is-a-kind-of” relationship among kinds of entities to allow

related kinds to share properties and implementation.

Polymorphism

Exploitation of logical or structural similarities of organization to allow related

kinds to exhibit similar behaviors via similar interfaces.

Genericity

Exploitation of logical or structural similarities of organization to produce generic

objects.

Patterns

Exploitation of common relationship scenarios among objects. (e.g., client/server

system)

Inheritance

 OO Software Design and ruction Computer Science Dept Va Tech January 2002 ©2002 McQuain WD & Keller BJ

3 Hierarchy

Represented by generalize/specialize graph

Based on “is-a-kind-of” relationship

 E.g., a Manager is an Employee; a robin is a bird, and so is an ostrich.

Is a form of knowledge representation – a “taxonomy” structures knowledge about nearby

entities.

Extendable without redefining everything

 E.g., knowing a robin is a bird tells me that a robin has certain properties and

behaviors, assuming I know what a “bird” is.

Specialization can be added to proper subset of hierarchy

Inheritance

 OO Software Design and ruction Computer Science Dept Va Tech January 2002 ©2002 McQuain WD & Keller BJ

4 A Graphics Shape Hierarchy

Shape

2D-Shape 3D-Shape

Quadrilateral

Circle

Point Line

Triangle

Parallelogram Trapezoid Rectangle

Square

Ellipse

Inheritance

 OO Software Design and ruction Computer Science Dept Va Tech January 2002 ©2002 McQuain WD & Keller BJ

5 Taxonomy

A generalization/specialization hierarchy based on “is-a-kind-of” relationships:

Person

Name

Address

Employee

Name

Address

ID

Department

Student

Name

Address

ID

Major

Level

more general

less details

more specialized

more details

Inheritance

 OO Software Design and ruction Computer Science Dept Va Tech January 2002 ©2002 McQuain WD & Keller BJ

6 Inheritance

Terminology

– Base type or class (a.k.a. superclass, parent type)

– Derived type or class (a.k.a. subclass, subtype, child type)

Important Aspects

– Programming: implement efficiently a set of related classes (mechanical)

– Design: organize coherently the concepts in an application domain
(conceptual)

– Software Engineering: design for flexibility and extensibility in software
systems (logical)

Inheritance

 OO Software Design and ruction Computer Science Dept Va Tech January 2002 ©2002 McQuain WD & Keller BJ

7 Student Class w/o Inheritance

public class Student {

 private Name nom;

 private Address addr;

 private String major;

 private String ID;

 private int level;

 public Student(Name nom2, Address addr2, String curr,

 String id, int rank) { ... }

 public Name getName() { ... }

 public void setName(Name nom2) { ... }

 //. . .

 public String getMajor() { ... }

 public void setMajor(String curr) { ... }

 public String getID() { ... }

 public Student& setID(String id) { ... }

 public int getLevel() { ... }

 public Student& setLevel(int rank) { ... }

}

Specify all the data members

Specify appropriate

ructors

Specify accessors and

mutators for all data

members

Inheritance

 OO Software Design and ruction Computer Science Dept Va Tech January 2002 ©2002 McQuain WD & Keller BJ

8 Employee Class w/o Inheritance

public class Employee {

 private Name nom;

 private Address addr;

 private String dept;

 private String ID;

 public Employee(Name nom2, Address addr2,

 String office, String id) { ... }

 public Name getName() { ... }

 public void setName(Name nom2) { ... }

 //. . .

 public String getDept() { ... }

 public void setDept(String office) { ... }

 public String getID() { ... }

 public void setID(String id) { ... }

}

Specify all the data members

Specify appropriate

constructors

Specify accessors and

mutators for all data

members

Inheritance

 OO Software Design and ruction Computer Science Dept Va Tech January 2002 ©2002 McQuain WD & Keller BJ

9 What is Common?

Both classes contain the data members

 Name nom;

 Address addr;
 String ID;

and the associated member functions

 Name getName()

 Address getAddress()

 String getID()

 void setName(Name nom2)

 void setAddress (Address addr2)

 void setID(String id)

From a coding perspective, this is somewhat wasteful because we must duplicate the

declarations and implementations in each class.

From a S/E perspective, this is undesirable since we must effectively maintain two copies

of (logically) identical code.

Inheritance

 OO Software Design and ruction Computer Science Dept Va Tech January 2002 ©2002 McQuain WD & Keller BJ

10 What Do We Want?

Simply put, we want to exploit the fact that Student and Employee both are

"people".

That is, each shares certain data and function members which logically belong to a more
general (more basic) type which we will call a Person.

We would prefer to NOT duplicate implementation but rather to specify that each of the

more specific types will automatically have certain features (data and functions) that are

derived from (or inherited from) the general type.

Question: are there any attributes or operations in the overlap that we don't want to
include in the base type Person?

Inheritance

 OO Software Design and ruction Computer Science Dept Va Tech January 2002 ©2002 McQuain WD & Keller BJ

11 How Do We Get It?

By employing the inheritance mechanism…

Inheritance in is NOT simple, either syntactically or semantically. We will examine a

simple case first (based on the previous discussion) and defer explicit coverage of many

specifics until later.

Inheritance in involves specifying in the declaration of one class that it is derived from

(or inherits from) another class.

Some languages incorporate inheritance differently. The mechanics of specifying

inheritance differ along with subtle forms of inheritance.

Inheritance

 OO Software Design and ruction Computer Science Dept Va Tech January 2002 ©2002 McQuain WD & Keller BJ

12 The Base Class: Person

public class Person {

 private Name nom;
 private Address addr;

 public Person(Name nom2, Address addr2)
 { ... }
 public Name getName() { ... }
 public void setName(Name& nom) { ... }
 public void setAddress(Address addr2) { ... }
 public Address getAddress() { ... }

}

Having identified the common elements shared by both classes (Employee and

Student), we specify a suitable base class:

The base class should contain data members and function members that are general to all

the types we will derive from the base class.

Inheritance

 OO Software Design and ruction Computer Science Dept Va Tech January 2002 ©2002 McQuain WD & Keller BJ

13 A Derived Class: Employee

public class Employee extends Person {

 private String dept;
 private String ID;

 public Employee()
 public Employee(Person per, String office,
 String id)
 public Employee(Name nom2, Address addr2,
 String office, String id)

 public String getDept()
 public void setDept(String office)
 public String getID()
 public void setID(String id)

}

Specify base class Specify public

inheritance

Specify additional data members not

present in base class

Specify appropriate

constructors

Specify accessors and

mutators only for the

added data members

Inheritance

 OO Software Design and ruction Computer Science Dept Va Tech January 2002 ©2002 McQuain WD & Keller BJ

14 Logical View of an Employee Object

Public interface Private members

nom

addr

dept

ID

Employee(. . .)

getDept()

.

.

.

getAddress()

Employee “layer”

Person “layer” (inherited

from base type)

public members of the

base type are public in

the derived type

private members of the

base type are private in

the derived type

Inheritance

 OO Software Design and ruction Computer Science Dept Va Tech January 2002 ©2002 McQuain WD & Keller BJ

15 Constructing a Derived Type Object

public Employee() {
 super();
 dept = "None";
 ID = "None";
}

When an object of a derived type is declared, the default constructor for the base type will

be invoked BEFORE the body of the constructor for the derived type is executed (unless

an alternative action is specified…).

It's not necessary to explicitly

invoke the base constructor here,

but it makes the behavior more

obvious.

Alternatively, the derived type constructor may explicitly invoke a non-default base type

constructor :

public Employee(Person per, String office,
 String& id) {
 super(per.getName(), per.getAddress());
 dept = office;
 ID = id;
} Here, the (default) copy ructor for

the base class is used.

Inheritance

 OO Software Design and ruction Computer Science Dept Va Tech January 2002 ©2002 McQuain WD & Keller BJ

16 Derived Class Member Access Problem

public Employee(Person per, String office,
 String id) {

 nom = per.getName();
 addr = per.getAddress();
 dept = office;
 ID = id;
}

Error: cannot access private

member declared in class
Person.

Objects of a derived type inherit the data members and function members of the base

type. However, the derived object may not directly access the private members of the

base type:

public Employee(Person per, String office,
 String id) {
 setName(per.getName());
 setAddress(per.getAddress());
 // . . .
}

For a derived-class constructor we directly invoke a base class constructor, as shown
on the previous slide, or use the Person interface:

Inheritance

 OO Software Design and ruction Computer Science Dept Va Tech January 2002 ©2002 McQuain WD & Keller BJ

17 Protected Access

The restriction on a derived type's access seems to pose a dilemma:

 - Having the base type use only public members is certainly unacceptable.

 - Having the derived class use the public interface of the base class to access and/or

modify private base class data members is clumsy.

public class Person {

 protected Name nom;

 protected Address addr;

//. . .

}

public Employee(/*. . .*/)
{

 nom = nom2; // OK now
 addr = addr2;
 dept = office;
 ID = id;
}

Java/C++ provides a middle-ground level of access control that allows derived types to

access base members which are still restricted from access by unrelated types.

The keyword protected may be used to specify the access restrictions for a class

member:

Inheritance

 OO Software Design and ruction Computer Science Dept Va Tech January 2002 ©2002 McQuain WD & Keller BJ

18 A Sibling Class

public class Student extends Person {

 private String major;
 private String ID;
 private int level;

 public Student(Person per,
 String curr,
 String id, int rank)

 public String getMajor()
 public void setMajor(String curr)
 public String getID()
 public void setID(String id)
 public int getLevel()
 public void setLevel(int rank)

}

Note that, so far as the language is concerned, Student and Employee enjoy no

special relationship as a result of sharing the same base class.

Inheritance

 OO Software Design and ruction Computer Science Dept Va Tech January 2002 ©2002 McQuain WD & Keller BJ

19 Using Objects of Derived Classes

//. . .
Person JBH = new Person(new Name("Joe", "Bob", "Hokie"),
 new Address("Oak Bridge Apts", "#13", "Blacksburg",
 "Virginia", "24060"));

Employee JoeBob = new Employee(JBH, "Sales", "jbhokie");

System.out.println("Name: " + JoeBob.getName() +
 " Dept: " + JoeBob.getDept()
 " ID: " + JoeBob.getID());

Person HHooI = new Person(new Name("Haskell", "Horatio", "Hoo"),
 new Address("1 Rotunda Circle", "",
 "Charlottesville", "VA", "21009"));
Student HaskellHoo = new Student(HHooIV, "Undecided",
 "101-01-0101", 40);

HaskellHoo.setAddress(new Address("Deke House", "333 Coors Way",
 "Charlottesville", "VA",
 "21010"));
HaskellHoo.setMajor("Undeclared");
//. . .

Base object is

only declared to

simplify

constructor call.

Objects of a derived class may be declared and used in the usual way:

Call base member

Call derived members

…to the client code there's no evidence here that the class is derived…

Inheritance

 OO Software Design and ruction Computer Science Dept Va Tech January 2002 ©2002 McQuain WD & Keller BJ

20 Extending the Hierarchy

There's no restriction on how many levels of inheritance can be designed, nor is there any

reason we can't mix inheritance with association and/or aggregation.

Actually, Employee is not a terribly interesting class but it has two (or more) useful

sub-types:

Person

Student Employee

Staff Professor

Address

Name

1

1

1
1

Inheritance

 OO Software Design and ruction Computer Science Dept Va Tech January 2002 ©2002 McQuain WD & Keller BJ

21 Staff Class and Professor Class

For the sake of an example, a staff member is paid an hourly wage, so the class Staff

must provide the appropriate extensions…

public class Staff extends Employee {

 private double hourlyRate;

 public Staff(Employee emp, double rate)
 public double getRate()
 public void setRate(double rate)
 public double grossPay(int hours)

}

public class Professor extends Employee {

 private double salary;

 public Professor(Employee emp, double income)
 public double getSalary()
 public void setSalary(double income)
 public double grossPay(int days)

}

…whereas a

professor is paid a

fixed salary:

Inheritance

 OO Software Design and ruction Computer Science Dept Va Tech January 2002 ©2002 McQuain WD & Keller BJ

22 An Inadequate Base Class Member Function

public void setID(String id)
{
 ID = id;
 // return (this); //chaining
}

The base member function Employee setID() is simple:

This implementation raises two issues we should consider:

 - What if there's a specialized way to set the ID field for a derived type?

 - Is the return type really acceptable for a derived type?

We’ll consider the first question now… suppose that the ID for a professor must begin

with the first character of that person's department.

Then Professor setID() must enforce that restriction.

Inheritance

 OO Software Design and ruction Computer Science Dept Va Tech January 2002 ©2002 McQuain WD & Keller BJ

23 Overriding a Base Class Member Function

@Override
public void setID(String id) {

 if (id.charAt(0) == dept.charAt(0))
 ID = id;
 else
 ID = dept.charAt(0) + id;

}

In the derived class, provide an appropriate implementation, using the same interface.

That will override the base class version when invoked on an object of the derived type:

The appropriate member function implementation is chosen (at compile time), based upon

the type of the invoking object and the inheritance hierarchy. Beginning with the derived

class, the hierarchy is searched upward until a matching function definition is found:

Employee E = new Employee(/*. . .*/);
Professor F = new Professor(/*. . .*/);
//. . .
E.setID("12334"); // Employee setID()
F.setID("99012"); // Professor setID()

Assuming that dept

has protected status.

Inheritance

 OO Software Design and ruction Computer Science Dept Va Tech January 2002 ©2002 McQuain WD & Keller BJ

24 Extending a Base Class Member Function

void display(PrintWriter out) {

 out.print("Name: " + nom +
 " Address: " + addr);
}

Suppose we added a display member function to the base type:

This is inadequate for a Professor object since it doesn't recognize the additional data

members… we can fix that by overriding again (with a twist):

void display(PrintWriter out) {

 super.display(Out);

 out.print("ID: " + ID +
 " Dept: " + dept);
};

Here, we use the base class display function, invoking it with the appropriate scope

resolution, and then extend that implementation with the necessary additional code.

Inheritance

 OO Software Design and ruction Computer Science Dept Va Tech January 2002 ©2002 McQuain WD & Keller BJ

25 Copying a Derived Object to a Base Object

Employee eHomer = new Employee(new Name("Homer", "P", "Simpson"),
 new Address("1 Chernenko Way", "", "Blacksburg", "VA", "24060"),
 "Physics", "P401");
Professor homer = new Professor(eHomer, 45000.00);

Employee emp;
Person per;

emp = homer; // legal assignments, but usually inadvisable
per = homer;

It is legal to assign a derived type object to a base type object:

System.out.println(per.getName());

System.out.println(emp.getDept());

//invalid

System.out.println(per.getSalary());

System.out.println(emp.grossPay(14));

When a derived object is

assigned to a base target,

only the public members

appropriate to the target

type are accessible.

Inheritance

 OO Software Design and ruction Computer Science Dept Va Tech January 2002 ©2002 McQuain WD & Keller BJ

26 Another Slice

void printEmployee(Employee toPrint, PrintWriter out)
{
 out.print(toPrint.getID() + "\" + toPrint.getName());
}

printEmployee() sees only the Employee layer of the actual parameter that was

passed to it.

That's actually OK in this case since that's all printEmployee() deals with

anyway.

However, it's certainly a limitation you must be aware of… what if you wanted to

write a generic print function that would accept any derived type?

Inheritance

 OO Software Design and ruction Computer Science Dept Va Tech January 2002 ©2002 McQuain WD & Keller BJ

27 Assigning Base Type to Derived Type

// assume declarations from slide 25. . .

homer = eHomer; // illegal – compile time error

By default, a base type object may not be assigned to a derived type object:

Name: . . .

Addr: . . .

Dept: Physic

ID: P401

Salary:

homer eHomer

Name: . . .

Addr: . . .

Dept: Physics

ID: P401

??

Inheritance

 OO Software Design and ruction Computer Science Dept Va Tech January 2002 ©2002 McQuain WD & Keller BJ

28 Inheritance and Development

Inheritance provides a number of benefits with respect to development:

 - reusability of common implementation

 - representation of natural logical relationships among types

Inheritance also carries a cost:

 - designing modifications to base class require understanding the effect on all

derived classes

 - designing modifications to derived class requires understanding of the

relationship to the base class (not usually too serious)

 - modifications to base class will require re-testing implementations of

derived classes to verify nothing is broken

