
Aggregation

 OO Software Design and Construction Computer Science Dept Va Tech January 2002 ©2002 McQuain WD & Keller BJ

1 Composition of Classes

composition an organized collection of components interacting to achieve a

coherent, common behavior.

Why compose classes?

Permits a “lego block” approach to design and implementation:

 Each object captures one reusable concept.

 Composition conveys design intent clearly.

Improves readability of code.

Promotes reuse of existing implementation components.

Simplifies propagation of change throughout a design or an implementation.

Aggregation

 OO Software Design and Construction Computer Science Dept Va Tech January 2002 ©2002 McQuain WD & Keller BJ

2 Composition by Aggregation

Aggregation (containment)

 Example: an Employee object contains an Address object which encapsulates

 related information within a useful package.

The objects do not have independent existence; one object is a component or sub-part of

the other object.

Neither object has "meaning" without the other.

Aggregation is generally established within the class definition. However, the connection

may be established by pointers whose values are not determined until run-time. (Physical

containment vs linked containment.)

Sometimes referred to as the “has-a” relationship.

Aggregation

 OO Software Design and Construction Computer Science Dept Va Tech January 2002 ©2002 McQuain WD & Keller BJ

3 Advantages of Aggregation

Simplicity – client can deal directly with the containing object (the aggregating object or

aggregation) instead of dealing with the individual pieces.

Safety – sub-objects are encapsulated.

Specialized interface – general objects may be used together with an interface that is

specialized to the problem at hand.

Structure indicates the designer's intention and system abstraction.

Can substitute implementations.

Aggregation

 OO Software Design and Construction Computer Science Dept Va Tech January 2002 ©2002 McQuain WD & Keller BJ

4 Static vs Dynamic Aggregation

Static – the number of sub-objects does not vary.

 - a person has a name and an address

 - a rectangle has a NW corner and a height and a width

Dynamic – the number of sub-objects may vary.

 - a catalog may have many items, and they may be added/deleted

 - a host list has a changing list of entries

Aggregation

 OO Software Design and Construction Computer Science Dept Va Tech January 2002 ©2002 McQuain WD & Keller BJ

5 Aggregation in Class Diagrams

This is similar to the representation of an association relationship except that the arrow is

rooted in a diamond instead of a circle.

Cardinality is indicated in the same

manner. For a dynamic aggregation, the

cardinality for the aggregated type (Name

here) would be either a range, such as 0..n

or an asterisk.

Person

Name

1

1

SSN

1

1

Aggregation

 OO Software Design and Construction Computer Science Dept Va Tech January 2002 ©2002 McQuain WD & Keller BJ

6 Simple Aggregations

public class Address {

 private String street;

 private String city;

 private String state;

}

An Address object physically contains a number of constituent objects:

For instance, the object city is created when an Address object is created and

destroyed when that object is destroyed. For our purpose, the city object has no

meaning aside from its contribution to the Address object.

public class Name {

 private String first;

 private String middle;

 private String last;

}

Aggregation

 OO Software Design and Construction Computer Science Dept Va Tech January 2002 ©2002 McQuain WD & Keller BJ

7 A More Interesting Aggregation

enum Gender {MALE, FEMALE, GENDERUNKNOWN}

public class Person {

 private Name nom; // sub-object

 private Address addr; // sub-object

 private Person spouse; // association link

 private Gender gen; // simple data member

// . . .

}

A Person object physically contains an Address object and a Name object:

There is also a provision in the Person object for an association with another Person

object.

Aggregation

 OO Software Design and Construction Computer Science Dept Va Tech January 2002 ©2002 McQuain WD & Keller BJ

8 Typical Aggregation Construction/Destruction

In a typical aggregation, where the sub-objects are data members (not allocated

dynamically), the following rules hold for constructor and destructor sequencing:

Construction the default constructor is invoked for each sub-object, then the

constructor for the containing object is invoked.

So, aggregates are constructed from the inside-out.

Destruction the destructor is invoked for the containing object first, and then the

destructor for each sub-object is invoked.

So, aggregates are destructed from the outside-in.

There is no default initialization for simple data members. Those should be handled

explicitly in the constructor for the "enclosing" object.

Aggregation

 OO Software Design and Construction Computer Science Dept Va Tech January 2002 ©2002 McQuain WD & Keller BJ

9 Person Constructor

Person() {

 Spouse = null;

 Gen = Gender.GENDERUNKNOWN;

}

Person(Name N, Address A, Gender G) {

 Nom = N;

 Addr = A;

 Spouse = null;

 Gen = G;

}

The Person constructors must manage sensible initialization of the simple data

members:

Aggregation

 OO Software Design and Construction Computer Science Dept Va Tech January 2002 ©2002 McQuain WD & Keller BJ

10 Example

int main() {

 Person P;

}

Consider the trivial program below:

The constructors and destructors were instrumented so that we can see when they are

invoked.

Obviously, this is consistent with the stated rules for aggregate construction and

destruction.

Constructing default Name

Constructing default Address

Constructing default Person

Destructing Person

Destructing Address

Destructing Name

Aggregation

 OO Software Design and Construction Computer Science Dept Va Tech January 2002 ©2002 McQuain WD & Keller BJ

11 Composition for Flexibility

The use of composition promotes the reuse of existing implementations, and provides for

more flexible implementations and improved encapsulation:

N
e
x
t

“Data Socket”

Data

Element

Here we have a design for a list node object that:

 separates the structural components (list pointers)

from the data values

 allows the list node to store ANY type of data

element…

 without needing any knowledge of that type

public class LinkNode {

 private Item Data; // data “capsule”

 private LinkNode* Next; // pointer to next node

// . . .

}

Aggregation

 OO Software Design and Construction Computer Science Dept Va Tech January 2002 ©2002 McQuain WD & Keller BJ

12 Containers

Container objects which hold a collection of objects/references of some type.

The use of containers require one to address possibly two relationships:

1. The container object itself.

2. The container and the objects it holds.

First: is the container object inside another object? Does the container object have a

lifetime of its own?

Second: Are the contained objects instantiated (and destroyed) by the container?

Most type two relationships are association.

Aggregation

 OO Software Design and Construction Computer Science Dept Va Tech January 2002 ©2002 McQuain WD & Keller BJ

13 Extended Example

Counter

void increment()

int getCount()

Passenger

Counter

void incUniv()

void incMonthly()

void incCash()

3

Consider a system for keeping track of passengers in a bus system, keeping a counter for

bus passengers using each of several payment methods:

Aggregation

 OO Software Design and Construction Computer Science Dept Va Tech January 2002 ©2002 McQuain WD & Keller BJ

14 Counter Class

public class Counter

{

 private int cnt = 0;

 public Counter(Counter c) {this.cnt = c.cnt;}

 public Counter(int iCnt) { cnt = iCnt;}

 public void Increment() { cnt++; }

 public int getCount() { return cnt; }

}

We will employ a Counter class:

Aggregation

 OO Software Design and Construction Computer Science Dept Va Tech January 2002 ©2002 McQuain WD & Keller BJ

15 PassengerCounter Class

public class PassengerCounter {

 private Counter UnivID;

 private Counter Monthly

 private Counter Cash;

 public PassengerCounter() { }

 public void incUnivID() { }

 public void incMonthly() { }

 public void incCash() { }

 public int getUnivIDCount() { }

 public int getMonthlyCount() { }

 public int getCashCount() { }

 public void summarize(PrintWriter out) { }

}

We will employ a PassengerCounter class:

Aggregation

 OO Software Design and Construction Computer Science Dept Va Tech January 2002 ©2002 McQuain WD & Keller BJ

16 PassengerCounter Implementation

public PassengerCounter() {

 UnivID = new Counter();

 Monthly = new Counter();

 Cash = new Counter();

}

void incUnivID() {

 UnivID.Increment();

}

void incMonthly() {

 Monthly.Increment();

}

void incCash() {

 Cash.Increment();

}

Constructors:

Mutators:

Aggregation

 OO Software Design and Construction Computer Science Dept Va Tech January 2002 ©2002 McQuain WD & Keller BJ

17 PassengerCounter Implementation

int getUnivIDCount() {

 return UnivID.getCount();

}

int getMonthlyCount() {

 return Monthly.getCount();

}

int getCashCount() {

 return Cash.getCount();

}

Accessors:

void summarize(PrintWriter out) {

 out.println("Payment summary:");

 out.println("University ID |" + getUnivIDCount());

 out.println("Monthly pass |" + getMonthlyCount());

 out.println("Cash |" + getCashCount());

}

Display function:

Aggregation

 OO Software Design and Construction Computer Science Dept Va Tech January 2002 ©2002 McQuain WD & Keller BJ

18 PassengerCounter Driver

void driver() {

 PassengerCounter RiderStats = new PassengerCounter();

 Random rand = new Random(System.currentTimeMillis());

 for (int i = 0; i < 100; i++) {

 int payType = rand.nextInt(3);

 switch (payType) {

 case 0: RiderStats.incUnivID();

 break;

 case 1: RiderStats.incMonthly();

 break;

 case 2: RiderStats.incCash();

 break;

 default: break;

 };

 }

 RiderStats.Summarize(new PrintWriter(System.out));

}

Driver to test the PassengerCounter class:

Payment summary:

University ID | 42

Monthly pass | 31

Cash | 27

