
Association

 OO Software Design and Construction Computer Science Dept Va Tech January 2002

1 Composition of Classes

composition an organized collection of components interacting to achieve a coherent,

common behavior.

Why compose classes?

Permits a “Lego block” approach to design and implementation:

 Each object captures one reusable concept.

 Composition conveys design intent clearly.

Improves readability of code.

Promotes reuse of existing implementation components.

Simplifies propagation of change throughout a design or an implementation.

©2002 McQuain WD, Keller BJ & Barnette ND

Association

 OO Software Design and Construction Computer Science Dept Va Tech January 2002

2 Composition by Association

Association (acquaintance)

 Example: a database object may be associated with a file stream object.

 The database object is “acquainted” with the file stream and may use its public

 interface to accomplish certain tasks.

Acquaintance may be one-way or two-way.

Association is managed by having a “handle” on the other object.

Associated objects have independent existence (as opposed to one being a sub-part of the

other).

Objects have "meaning" apart from their association.

Sometimes referred to as the “knows-a” relationship.

©2002 McQuain WD, Keller BJ & Barnette ND

Association

 OO Software Design and Construction Computer Science Dept Va Tech January 2002

3 Establishing an Association

The objects that will be involved are created independently by the driver code.

The driver code "introduces the objects" by passing one object, or its address, to the other

object which stores a handle (pointer or reference) to maintain the association.

Association is generally established dynamically (at run-time), although the design of one,

or both, of the classes must make a provision for establishing and maintaining the

association.

An association can also be implemented as an object, but that is not required for most

abstractions.

©2002 McQuain WD, Keller BJ & Barnette ND

Association

 OO Software Design and Construction Computer Science Dept Va Tech January 2002

4 A Simple Association

public class DisplayableNumber {

 private int count = 0;

 private PrintWriter out = new PrintWriter(System.out);

 public DisplayableNumber(int init, PrintWriter where) {

 count = init;

 out = where;

 }

 public void showIn(PrintWriter setOut) {

 out = setOut;

 }

 public void show() {

 out.print(count);

 }

 public void reset(int newValue) {

 count = newValue;

 }

 public int value() {

 return count;

 }

}

©2002 McQuain WD, Keller BJ & Barnette ND

Association

 OO Software Design and Construction Computer Science Dept Va Tech January 2002

5 Establishing the Association

DisplayableNumber counter; // default association

PrintWriter out = new PrintWriter("Scores.data");

DisplayableNumber score(1, out); // explicit association

score.reset(score.value() + 1);

score.show();

counter.showIn(out); // reset association

Here, the DisplayableNumber has the responsibility for maintaining the association

with a particular output stream, and gives the user the ability to set or change the targeted

stream as desired.

Note the independence of the DisplayableNumber object and the associated stream

objects.

©2002 McQuain WD, Keller BJ & Barnette ND

Association

 OO Software Design and Construction Computer Science Dept Va Tech January 2002

6 Potential Problems

DisplayableNumber counter; // default association

counter.showIn(null); // reset association

counter.show(); // really bad. . .

Consider:

Here, the invocation of show() on counter should result in a runtime violation, as

a null pointer will be dereferenced.

The issues that usually arise when pointers/references are used may arise with an

association between objects. It is generally going to be the responsibility of the

"invoking" object to be sure that an association actually exists before attempting to

exploit it.

Here, counter fails to do that.

©2002 McQuain WD, Keller BJ & Barnette ND

Association

 OO Software Design and Construction Computer Science Dept Va Tech January 2002

7 Static vs. Dynamic Association

static association cannot change. It is usually established via an object

constructor, and there is no mutator function that would allow it to be

modified.

dynamic association uses method(s) that allow changing who is associated with the

object. Initial association may still be established at construction.

Consider:

 - the relationship between the CirculationDesk and the Catalog objects in the

library system

 - the relationship between a DisplayableNumber object and a stream

©2002 McQuain WD, Keller BJ & Barnette ND

Association

 OO Software Design and Construction Computer Science Dept Va Tech January 2002

8 Association in Class Diagrams

In a class diagram, an association is represented by a line with a circle at the boundary of

the object storing the association:

The association arrow may be labeled with

a brief description of the logical

relationship the association represents.

The head and terminus of the association

arrow may be labeled with integers or an

asterisk, indicating the number of objects

involved in each side of the association.

We will call these the multiplicity values.

Company

Employee

works for

employs

1

*

1

1

©2002 McQuain WD, Keller BJ & Barnette ND

Association

 OO Software Design and Construction Computer Science Dept Va Tech January 2002

9 Cardinalities

Not every relationship is one-to-one.

Specify cardinalities of relationships by numbers/symbols at ends of association arrows.

Possibilities:

 1:1 one to one

 1:2 one to two

 1:0…n one to from 0 to n

 1:* one to any number (including none)

 2:2 two to two

 m:n m to n

 : any number to any number

©2002 McQuain WD, Keller BJ & Barnette ND

Association

 OO Software Design and Construction Computer Science Dept Va Tech January 2002

10 Using this for Association

In some situations, one object may "register" itself with another, establishing an
association dynamically.

How can an object provide a pointer to itself??

public class Passenger {

 private int floor; // passenger knows what floor he's on

 public void board(Elevator otis) {

 if (otis.onFloor() == floor) // elevator can say what floor

 // it's on

 otis.addPassenger(this); // passenger registers himself

}

©2002 McQuain WD, Keller BJ & Barnette ND

