
Evaluating Class Design

 OO Software Design and Construction Computer Science Dept Va Tech January 2002 ©2002 McQuain WD & Keller BJ

1 Evaluating a Class Design

Evaluation is needed to accept, revise or reject a class design.

Five aspects to be evaluated:

– Abstraction: does it provide a useful one?

– Responsibilities: are they reasonable for the type?

– Interface: is it clean, simple?

– Usage: do we provide the “right” set of methods?

– Implementation: reasonable?

Evaluating Class Design

 OO Software Design and Construction Computer Science Dept Va Tech January 2002 ©2002 McQuain WD & Keller BJ

2 Tests for Adequacy of Abstraction

Identity:
Are class purpose and method purposes well-defined and connected?

Clarity:
Can purpose of class be given in brief, dictionary-style definition?

Uniformity:
Do operations have uniform level of abstraction?

Evaluating Class Design

 OO Software Design and Construction Computer Science Dept Va Tech January 2002 ©2002 McQuain WD & Keller BJ

3 Good or Bad Abstractions?

class Date:

Date represents a specific instant in time, with millisecond precision.

class TimeZone:

TimeZone represents a time zone offset, and also figures out daylight savings.

Evaluating Class Design

 OO Software Design and Construction Computer Science Dept Va Tech January 2002 ©2002 McQuain WD & Keller BJ

4 Tests for Adequacy of Responsibilities

Clear:
Does class have specific responsibilities?

Limited:

 Do responsibilities fit the abstraction (no more/less)?

Coherent:
Do responsibilities make sense as a whole?

Complete:
Does class completely capture the

 abstraction?

class Complex {

private:

 double Real, Imag;

public:

 Complex(double R = 0.0, double I = 0.0);

 double getReal() const;

 double getImag() const;

 void setReal();

 void setImag();

 double Magnitude() const;

};

Evaluating Class Design

 OO Software Design and Construction Computer Science Dept Va Tech January 2002 ©2002 McQuain WD & Keller BJ

5 Tests for Adequacy of Interface

Naming:
Do names clearly express the intended effect?

Symmetry:

 Are names and effects of pairs of inverse operations clear?

Flexibility:
Are methods adequately overloaded?

Convenience:
Are default values used when possible?

Evaluating Class Design

 OO Software Design and Construction Computer Science Dept Va Tech January 2002 ©2002 McQuain WD & Keller BJ

6 Example of Poor Naming

class ItemList {

private:

// . . .

public:

 void Delete(Item item);

 // Take Item’s node out of list and delete Item

 void Remove(Item item);

 // Take Item’s node out of the list but do not

 // delete Item

 void Erase(Item item);

 // Keep Item’s node in List, but with no information

};

Evaluating Class Design

 OO Software Design and Construction Computer Science Dept Va Tech January 2002 ©2002 McQuain WD & Keller BJ

7 Tests for Adequacy of Usage

Examine how objects of the class are used in different contexts (see below…)

Incorporate all operations that may be useful in these contexts… up to a point…

class Location {

 private:

 int xCoord, yCoord; //coordinates

public:

 Location(int x = 0, int y = 0);

 int xCoord(); //return xCoord value

 int yCoord(); //return yCoord value

};

// usage:

Location point(100,100);

// shift point:

point = Location(point.xCoord()+5, point.yCoord()+10);

Evaluating Class Design

 OO Software Design and Construction Computer Science Dept Va Tech January 2002 ©2002 McQuain WD & Keller BJ

8

class Location {

 private:

 int xCoord, yCoord; //coordinates

public:

 Location(int x = 0, int y = 0);

 int XCoord(); //return xCoord value

 int YCoord(); //return yCoord value

 void ShiftBy(int dx, int dy); // shift by relative coordinates

};

// Revised usage:

Location point(100,100);

point.ShiftBy(5, 10); // shift point

Revised Location Class

Evaluating Class Design

 OO Software Design and Construction Computer Science Dept Va Tech January 2002 ©2002 McQuain WD & Keller BJ

9 Implementation

Least important, mostly easily changed aspect to be evaluated.

– poorly engineered designs lead to problematic implementations

– massaging a problematic implementation (without redesign) rarely produces any

effective improvement

– it’s only code… the issues here are primarily language syntax and semantics

Overly complex implementation may mean:

– class is not well conceived

– class has been given too much responsibility

