
Divide and Conquer

Intro Problem Solving in Computer ScienceCS@VT ©2011-12 McQuain

1Linear Search

Problem: Given a list of N values, determine whether a given value X occurs

in the list.

1 2 3 4 5 6 7 8

17 31 9 73 55 12 19 7

For example, consider the problem of determining whether the value 55 occurs in:

There is an obvious, correct algorithm:

start at one end of the list,

if the current element doesn't equal the search target, move to the next

element,

stopping when a match is found or the opposite end of the list is reached.

Basic principle: divide the list into the current element and everything before (or

after) it; if current isn't a match, search the other case

Divide and Conquer

Intro Problem Solving in Computer ScienceCS@VT ©2011-12 McQuain

Linear Search 2

algorithm LinearSearch takes number X, list number L, number Sz

Determines whether the value X occurs within the list L.
Pre: L must be initialized to hold exactly Sz val ues
#

Walk from the upper end of the list toward the lo wer end,
looking for a match:

while Sz > 0 AND L[Sz] != X
Sz := Sz - 1

endwhile

if Sz > 0 # See if we walked off the front of the list
display true # if so, no match

else
display false # if not, got a match

halt

Divide and Conquer

Intro Problem Solving in Computer ScienceCS@VT ©2011-12 McQuain

Binary Search 3

But, consider the problem of determining whether the value 31 occurs in:

1 2 3 4 5 6 7 8

7 9 12 17 19 31 55 73

Suppose we pick an arbitrary element of the list to consider first, say element #4.

Now, element #4 is 17, which is smaller than our search target (31).

But, the elements of this list are in ascending order, and that means we not only know that

element #4 isn't a match, but we also know that no element that precedes it could be a

match either.

This suggests that, if we have a list that is in ascending (or descending) order then there

may be a more efficient approach than linear search.

Divide and Conquer

Intro Problem Solving in Computer ScienceCS@VT ©2011-12 McQuain

Binary Search 4

The basic approach seems to be:

Pick an element in the list

While the current element doesn't match our search target,

If the current element is larger than our search target

pick a preceding element to consider next

else

pick a succeeding element to consider next

1 2 3 4 5 6 7 8

7 9 12 17 19 31 55 73Pick #3, too small:

7 9 12 17 19 31 55 73Pick #7, too large:

7 9 12 17 19 31 55 73Pick #5, too small:

7 9 12 17 19 31 55 73Pick #6, done!:

Divide and Conquer

Intro Problem Solving in Computer ScienceCS@VT ©2011-12 McQuain

Binary Search 5

This leaves some important questions:

How do we pick elements?

How do we know we are done if the search target is not in the list?

For lack of a more compelling strategy, it seems we might as well just pick an

element that is in the middle of the part of the list that is still "in play"… and that

suggests we give up when the part that's still "in play" becomes empty.

Divide and Conquer

Intro Problem Solving in Computer ScienceCS@VT ©2011-12 McQuain

Binary Search: Design Details 6

Keeping track of what's "in play":

This seems simple enough; we keep track of the list positions that bound the part of

the list that could still contain a match to our search target.

So, we need two variables, say Lo and Hi.

Initially, the whole list is in play, so we set them to 1 and N, respectively.

How do we update them?

If the current element (which will be at Mid, the average of Lo and Hi) is too

large, we also just ruled out every element beyond Mid, so we should set Hi

to be one less than Mid.

On the other hand, if the current element is too small, we also just ruled out

every element before Mid, so we should set Lo to be one more than Mid.

Divide and Conquer

Intro Problem Solving in Computer ScienceCS@VT ©2011-12 McQuain

Binary Search: Design Details 7

Choosing next element to consider:

We want to find an element that's (about) halfway between Lo and Hi.

This seems simple, we want to average Lo and Hi.

So, we need a variable, say Mid, to keep track of the value.

One issue:

The position of an element must be an integer, but the average of two integers

is not necessarily an integer… is this a problem?

No. We just need to round/truncate the result to get an integer, and it doesn't

seem it matters whether we round up or down; since the details of making

this happen are language-dependent, we'll ignore the issue at this level.

Divide and Conquer

Intro Problem Solving in Computer ScienceCS@VT ©2011-12 McQuain

Binary Search: Design Details 8

How do we know when to stop?

Well, obviously we quit if we find a match.

And, we know there is no match if the "in play" region becomes empty.

And, we will know that's happened if we ever reach the state that Lo is larger than Hi.

Divide and Conquer

Intro Problem Solving in Computer ScienceCS@VT ©2011-12 McQuain

Binary Search 9

algorithm BinarySearch takes number X, list number L, number Sz

Determines whether the value X occurs within the nondescending
ordered list L.
Pre: L must hold exactly Sz values, in nondescend ing order
Returns:
true if X occurs in L[1:Sz], false otherwis e
#

Initially, the part of the list to search is from
index 1 to index Sz
number Lo := 1
number Hi := Sz
. . .

Divide and Conquer

Intro Problem Solving in Computer ScienceCS@VT ©2011-12 McQuain

Binary Search 10

. . .
while Lo <= Hi

number Mid := (Lo + Hi) / 2 # find middle of in-play list

if List[Mid] = X # if we have a match, don e
display true
halt

endif

if List[Mid] > X # otherwise, eliminate about h alf
Hi := Mid - 1

else
Lo := Mid + 1

endif

endwhile

display false # no match found

halt

Divide and Conquer

Intro Problem Solving in Computer ScienceCS@VT ©2011-12 McQuain

Integer Exponentiation: Naive 11

Problem: Given an integer X and a non-negative integer N, calculate XN.

This has a simple solution:

algorithm XtoNv0 takes number X, number N

Computes the value of X^N.
Pre: X and N are nonnegative integers, not both zero.
#

XtoN := 1

while N > 0 # iterate; on kth pass we have X^k
XtoN := X * XtoN
N := N - 1

endwhile

display XtoN
halt

But this requires N multiply operations… seems expensive…

Divide and Conquer

Intro Problem Solving in Computer ScienceCS@VT ©2011-12 McQuain

Divide and Conquer 12

One technique for deriving a solution to a problem involves dividing the problem

into sub-parts which are easier to solve, and then deriving a solution to the original

problem by somehow recombining the solutions to the sub-parts.

Commonly, a problem is broken into two nontrivial subparts and the resulting

algorithm naturally involves recursion… a topic we will not explore at this time.

But in some cases, a problem is broken into a trivial part and a more complex part,

and the resulting algorithm is naturally iterative.

Binary search can be viewed in the latter light, where the current element is the

trivial case and the "in play" portion of the list constitutes the nontrivial part.

Divide and Conquer

Intro Problem Solving in Computer ScienceCS@VT ©2011-12 McQuain

Exponentiation: Divide and Conquer 13

Consider that we can approximately cut the number of multiplications in half if we have an

even exponent:

()2 2 2 2 2 2
k

kx x x x x x= = × × ×⋯

That's k multiplications instead of 2k… quite a savings.

And a similar "trick" works if we have an odd exponent:

()2 1 2 2 2 2 2
k

kx x x x x x x x+ = = × × × ×⋯

That's k+1 multiplications instead of 2k.

But, it is possible to do even better; consider that:

()()
2

2
11 10 2 8 2 2x x x x x x x x x= × = × × = × ×

That requires only 5 multiplications, and the advantage grows even larger if we have a

larger exponent…

Divide and Conquer

Intro Problem Solving in Computer ScienceCS@VT ©2011-12 McQuain

Exponentiation: Divide and Conquer 14

The key is to efficiently compute a factor whose exponent is a power of 2, since we can

compute a factor of that form with a small number of multiplications:

That requires only r multiplications!

()()
2

2
2

2 2r

x x
 

=  
 

⋯

But, of course, we not only have to do this, but we also have to keep track of the rest of the

computation; say we want to compute x21 :

21 4 16x x x x= × ×

So, we notice that the exponent is odd and we remember we need to throw in x1 ;

now we need to deal with the even exponent 20, which is the 5th power of x4 ;

but now we have an odd exponent, 5, so we remember to throw in an x4

. . .

Divide and Conquer

Intro Problem Solving in Computer ScienceCS@VT ©2011-12 McQuain

Exponentiation: Divide and Conquer 15

But, of course, we not only have to do this, but we also have to keep track of the rest of the

computation; say we want to compute x21:

Note Current

multiplier

Exp. remaining Accumulated

value

initial values x 21 : odd 1

decrement exponent, apply

multiplier to accumulated value

x 20 : even x

divide exponent by 2,

square multiplier

x2 10 : even x

divide exponent by 2,

square multiplier

x4 5 : odd x

decrement exponent, apply

multiplier to accumulated value

x4 4 : even x5

Divide and Conquer

Intro Problem Solving in Computer ScienceCS@VT ©2011-12 McQuain

Exponentiation: Divide and Conquer 16

But, of course, we not only have to do this, but we also have to keep track of the rest of the

computation; say we want to compute x21:

Note Current

multiplier

Exp. remaining Accumulated

value

prior state x4 4 : even x5

divide exponent by 2,

square multiplier

x8 2 : even x5

divide exponent by 2,

square multiplier

x16 1 : odd x5

decrement exponent, apply

multiplier to accumulated value

x16 0

stop!

x21

That's 7 multiplications to compute x21, not bad!

But we can eliminate the first multiplication (previous slide) since the exponent is not zero,

so this can be reduced to 6 multiplications.

Divide and Conquer

Intro Problem Solving in Computer ScienceCS@VT ©2011-12 McQuain

Integer Exponentiation: More Efficiently 17

algorithm XtoN takes number X, number N

Computes the value of X^N.
Pre: X and N are nonnegative integers, not both zero.

number XtoN := 1 # start with 1

while N > 0

if N is odd # if odd exponent
XtoN := XtoN * X # accumulate value so far
N := N – 1 # decrement to even exponent

endif
if N > 0 # if exponent not zero (IS even)

X := X * X # square the base value
N := N / 2 # cut exponent in half

endif
endwhile

display XtoN
halt

Divide and Conquer

Intro Problem Solving in Computer ScienceCS@VT ©2011-12 McQuain

Polynomial Evaluation: Naive 18

Problem: Given a value A and a polynomial P(X), calculate P(A).

We will assume that the polynomial is represented as a list of coefficients, listed from low

to high powers of the variable.

So, the polynomial

would be represented as:

5 3 2() 17 8 6 10P x x x x x= − + + −

1 2 3 4 5 6

-10 6 1 -8 0 17

Divide and Conquer

Intro Problem Solving in Computer ScienceCS@VT ©2011-12 McQuain

Polynomial Evaluation: Naive 19

algorithm evalPoly takes list number P, number D, number X

Computes the value of P(X), where P is a polynomi al of degree D.
Pre: X, D are initialized, D is an integer, D >= 0,
P is a list of D + 1 numbers
#

number value := P[1] # initialize to constant term
if X = 0 # if X is zero, we're done

display value

number pos := 2 # otherwise, need to process rest

. . .

Divide and Conquer

Intro Problem Solving in Computer ScienceCS@VT ©2011-12 McQuain

Polynomial Evaluation: Naive 20

. . .

while pos <= D + 1 # must use all coeff's

if P[pos] != 0 # but not zero coeff' s

number term := X, pow := 1

while pow < pos – 1 # iterate to get X^k
term := X * term
pow := pow + 1

endwhile

value := value + term * P[pos] # add C_k*x^k
endif

pos := pos + 1
endwhile

display value
halt

Divide and Conquer

Intro Problem Solving in Computer ScienceCS@VT ©2011-12 McQuain

Polynomial Evaluation: Horner's Method 21

An alternative way of evaluating a polynomial is suggested by grouping and factoring:

()()()()
2 3 5() 10 6 8 17

10 6 1 8 0 17

P x x x x x

x x x x x

= − + + − +

= − + + + − + +

This requires 5 multiplication operations and 4 addition operations.

This is known as Horner's Method, for William George Horner (1786 – 1837).

How does that compare with the naïve version?

2 3 5() 10 6 8 17

10 6 8 17

P x x x x x

x xx xxx xxxxx

= − + + − +

= − + + − +

This requires 11 multiplication operations and 4 addition operations.

Divide and Conquer

Intro Problem Solving in Computer ScienceCS@VT ©2011-12 McQuain

Polynomial Evaluation: Horner's Method 22

algorithm HornersMethod takes list number P, number D, number X

Computes the value of P(X), where P is a polynomi al of degree N.
Pre: X, N are initialized, N is an integer, N >= 0,
P is a list of N + 1 numbers.
#

number value := P[N+1] # value = C_{N+1}

while N >= 1 # process remaining terms

value := P[N] + value * X # value = X*current + C_ {N}
N := N – 1

endwhile

display value
halt

