Evaluating a Class Design Evaluating Class Design 1

Evaluation is needed to accept, revise or reject a class design.

Five aspects to be evaluated:

Abstraction: does it provide a useful one?
Responsibilities: are they reasonable for the type?
Interface: IS it clean, simple?

Usage: do we provide the “right” set of methods?
Implementation: reasonable?

OO Software Design and Construction

Tests for Adequacy of Abstraction Evaluating Class Design 2

Identity:
Are class purpose and method purposes well-defined and connected?

Clarity:
Can purpose of class be given in brief, dictionary-style definition?

Uniformity:
Do operations have uniform level of abstraction?

OO Software Design and Construction

Good or Bad Abstractions? Evaluating Class Design 3

class Date:
Date represents a specific instant in time, with millisecond precision.

class TimeZone:
TimeZone represents a time zone offset, and also figures out daylight savings.

OO Software Design and Construction

Tests for Adequacy of Responsibilities Evaluating Class Design 4
Clear:
Does class have specific responsibilities?
Limited:
Do responsibilities fit the abstraction (no more/less)?
Coherent:
Do responsibilities make sense as a whole?
. class Complex {
Complete: rivate:
Does class completely capture the
] double Real, Imag;
abstraction? public:
Complex (double R = 0.0, double I = 0.0);
double getReal const;
double getImag const;

’

void setReal

()
()
()
void setImag ()

double Magnitude () const;

o

OO Software Design and Construction

Tests for Adequacy of Interface Evaluating Class Design 5

Naming:
Do names clearly express the intended effect?

Symmetry:
Are names and effects of pairs of inverse operations clear?

Flexibility:
Are methods adequately overloaded?

Convenience:
Are default values used when possible?

OO Software Design and Construction

Example of Poor Naming Evaluating Class Design 6

class ItemList {

private:
/] Hard to
public:

voidIDeletekItem item) ;
// Take Item’s node out of list and delete Item

remember difference!

voidIRemovekItem item) ;
// Take Item’s node out of the list but do not

// delete Item

void (Item item) ;

// Keep Item’s node in List, but with no information

s

Computer Science Dept Va Tech January 2002 OO Software Design and Construction ©2002 McQuain WD & Keller BJ

Tests for Adequacy of Usage

Examine how objects of the class are used in different contexts (see below...)

Incorporate all operations that may be useful in these contexts... up to a point...

class Location {

private:
int xCoord, yCoord; //coordinates

public:
Location(int x = 0, int y = 0);
int xCoord() ; //return xCoord value
int yCoord(); //return yCoord value
I
// usage:

Location point (100,100);

// shift point:
point = Location([point.xCoord()+5, point.yCoord () +10|);

Evaluating Class Design

OO Software Design and Construction

2

/
5 50 compiey

Revised Location Class

Evaluating Class Design

8

class Location {
private:
int xCoord, yCoord;
public:
Location(int x =
int XCoord() ;
int YCoord();
void ShiftBy(int dx,

0,

b

// Revised usage:

point.ShiftBy (5, 10);

//coordinates

0)

//return xCoord value

int y =

//return yCoord value

int dy);

Location point (100,100);

// shift point

// shift by relative coordinates

OO Software Design and Construction

Implementation Evaluating Class Design

Least important, mostly easily changed aspect to be evaluated.
poorly engineered designs lead to problematic implementations

massaging a problematic implementation (without redesign) rarely produces any
effective improvement

it’s only code... the issues here are primarily language syntax and semantics

Overly complex implementation may mean:
class is not well conceived
class has been given too much responsibility

OO Software Design and Construction

9

