Evaluating a Class Design Evaluating Class Design 1

Evaluation is needed to accept, revise or reject a class design.

Five aspects to be evaluated:

Abstraction: does it provide a useful one?
Responsibilities: are they reasonable for the type?
Interface: IS it clean, simple?

Usage: do we provide the “right” set of methods?
Implementation: reasonable?
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Tests for Adequacy of Abstraction Evaluating Class Design 2

Identity:
Are class purpose and method purposes well-defined and connected?

Clarity:
Can purpose of class be given in brief, dictionary-style definition?

Uniformity:
Do operations have uniform level of abstraction?
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Good or Bad Abstractions? Evaluating Class Design 3

class Date:
Date represents a specific instant in time, with millisecond precision.

class TimeZone:
TimeZone represents a time zone offset, and also figures out daylight savings.
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Tests for Adequacy of Responsibilities  Evaluating Class Design 4
Clear:
Does class have specific responsibilities?
Limited:
Do responsibilities fit the abstraction (no more/less)?
Coherent:
Do responsibilities make sense as a whole?
. class Complex {
Complete: rivate:
Does class completely capture the
] double Real, Imag;
abstraction? public:
Complex (double R = 0.0, double I = 0.0);
double getReal const;
double getImag const;

’

void setReal

()
()
()
void setImag ()

double Magnitude () const;

o
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Tests for Adequacy of Interface Evaluating Class Design 5

Naming:
Do names clearly express the intended effect?

Symmetry:
Are names and effects of pairs of inverse operations clear?

Flexibility:
Are methods adequately overloaded?

Convenience:
Are default values used when possible?
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Example of Poor Naming Evaluating Class Design 6

class ItemList {

private:
/] Hard to
public:

voidIDeletekItem item) ;
// Take Item’s node out of list and delete Item

remember difference!

voidIRemovekItem item) ;
// Take Item’s node out of the list but do not

// delete Item

void (Item item) ;

// Keep Item’s node in List, but with no information

s
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Tests for Adequacy of Usage

Examine how objects of the class are used in different contexts (see below...)

Incorporate all operations that may be useful in these contexts... up to a point...

class Location {

private:
int xCoord, yCoord; //coordinates

public:
Location(int x = 0, int y = 0);
int xCoord() ; //return xCoord value
int yCoord(); //return yCoord value
I
// usage:

Location point (100,100);

// shift point:
point = Location([point.xCoord()+5, point.yCoord () +10|);

Evaluating Class Design
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Revised Location Class

Evaluating Class Design
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class Location {
private:
int xCoord, yCoord;
public:
Location(int x =
int XCoord() ;
int YCoord();
void ShiftBy(int dx,

0,

b

// Revised usage:

point.ShiftBy (5, 10);

//coordinates

0)

//return xCoord value

int y =

//return yCoord value

int dy);

Location point (100,100);

// shift point

// shift by relative coordinates

OO Software Design and Construction



Implementation Evaluating Class Design

Least important, mostly easily changed aspect to be evaluated.
poorly engineered designs lead to problematic implementations

massaging a problematic implementation (without redesign) rarely produces any
effective improvement

it’s only code... the issues here are primarily language syntax and semantics

Overly complex implementation may mean:
class is not well conceived
class has been given too much responsibility
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