
Problem Solving and Programming

• Design
Requires intense concentration– Requires intense concentration

– When is the best time to fix bugs?
• Testing

– Requires a lot of skill, practice
– How does problem solving relate to testing?

Debugging Example #1
A man who has had a heart attack goes every evening to a 

supervised exercise program. He handles the exercisesupervised exercise program. He handles the exercise 
well during the first 15 sessions, maintaining a heart rate 
at about 100 beats/minute. In the middle of the 16th

session, however, his heart rate suddenly shoots up to 
130 beats/minutes. Although this may not be dangerous, 
nevertheless, the attendant has him stop exercising and 
calls the supervising doctor. The man is short of breath 
but otherwise feels fine. The change in heart rate 
appears to be his only symptom. What question(s) 
should the doctor ask?



Debugging Example #2
A man went to wash his face on awakening and found that 

there was no hot water. He knew to look for a specialthere was no hot water. He knew to look for a special 
feature. He asked his wife whether she had done 
anything the day before near the boiler. Her response 
was in the negative. She added, however, “I didn’t have 
a chance to tell you, but the oil company sent a many 
yesterday to clean the furnace.” That certainly looked 
like a promising hint. A call to the oil company led to the 
solution of the problem.

Debugging

• One of the hardest parts of programming
St t 1 A id b i th fi t l• Strategy 1: Avoid bugs in the first place
– Careful design (clean decomposition)
– Care with syntactic issues (layout, commenting)

• Strategy 2: Implement in a series of small steps, 
and test along the way

Thi l li b t h t h d i th– This localizes new bugs to what changed in the 
program to introduce the bug.

• Finding bugs requires a disciplined, deductive 
approach



Scheduling

• Managing large-scale projects involves 
significant efforts to plan and schedule activitiessignificant efforts to plan and schedule activities
– It is human nature to work better toward intermediate 

milestones.
• The same concepts can/should be applied to 

mid-sized projects encountered in class.
– For any project that needs more than a week of activeFor any project that needs more than a week of active 

work to complete, break into parts and design a 
schedule with milestones and deliverables.

Real Results #1

• CS2606, Fall 2006
3 4 k j t• 3-4 week projects

• Kept schedule information:
– Estimated time required
– Milestones, estimated times for each
– Weekly estimates of time spent.



Real Results #2

Real Results #3

• Results were significant:
90% of scores below median involved students who– 90% of scores below median involved students who 
did less than 50% of the project prior to the last week.

– Few did poorly who put in > 50% time early
– Some did well who didn’t put in >50% time early, but 

most who did well put in the early time
• Correlations:

– Strong correlation between early time and high score
– No correlation between time spent and score
– No correlation between % early time and total time



What is the Mechanism?

• Correlations are not causal
Do they behave that way because they are good or– Do they behave that way because they are good, or 
does behaving that way make them good?

• Spreading projects over time allow the “sleep on 
it” heuristic to operate

• Avoiding the “zombie” effect makes people more 
productive (and cuts time requirements)productive (and cuts time requirements)

Myers-Briggs and Programming

• How do you think the personality dimensions 
relate to programming?relate to programming?
– Extrovert: Act/reflect/act. Energy from activity.

Introvert: Reflect/act/reflect. Activity requires downtime
– Sensing: Method, informed from outside, build pattern from facts

Intuition: Insight, informed from inside, fit facts to pattern

– Thinking: Decision from logic impersonalThinking: Decision from logic, impersonal
Feeling: Decision from harmony, personal

– Judging: Planned, decided, fixed, on time

Perceiving: Improvised, open, adaptable, dislike deadlines



Literature Results 1

• Huge differences in performance for 
programming time debugging time efficiency ofprogramming time, debugging time, efficiency of 
resulting code. Why?

• Each task (design, implementation, testing, 
debugging) requires different skills

• Several studies done on relationships between 
MBTI and various aspects of programmingMBTI and various aspects of programming

Literature Results 2

• We know that the distribution for MBTI among 
software engineers is different from the generalsoftware engineers is different from the general 
population. (Does it matter?)



Literature Results 3

• Code-review task (bug fixing)

F T
N 8.71 9.10
S 4.27 6.62

5 Habits of Highly
INeffective Programmers

1. Design with less than total focus
2. Disorganized code

– Style, comments, design
3. Bite off more than you can chew

– During impementation
4 D b i d lk4. Debug in a random walk
5. Program/debug In zombie mode

– a.k.a Don’t start early enough


