
Computational Problem Solving

• Three pillars of science and engineering:
Theory– Theory

– Experimentation
– Computation (Simulation)

• Some problems are difficult to analyze 
analytically, but easy to simulate.
Learn to “think comp tationall ” to get res lts• Learn to “think computationally” to get results 
from simple simulations.

• Use computation/simulation to explore.

Computational Example 1

• Birthday problem: Among a group of n people, 
what is the probability that two share a birthday?what is the probability that two share a birthday?
– This is related to hashing.
– Can you determine this analytically?
– How can you do this with simulation?



Algorithm #1
bool birthday(int count) {
int myArray[365];
for (int i=0; i<count; i++) {
int pos = Random(365);
if (myArray[pos] != 0)
return true;

else myArray[pos] = 1;
}
return false;

}

Issue: Must do it enough times to get meaningful statistics

Algorithm #2
double birthday(int count, int numtrials) {
int myArray[365];
int hits = 0;
for (int trial=0; trial<numtrials; trial++) {
for (int i=0; i<365; i++) myArray[i] = 0;
for (int i=0; i<count; i++) {
int pos = Random(365);
if (myArray[pos] != 0)
{ hits++; break; }

else myArray[pos] = 1;
}

}
return (double)hits/(double)numtrials;

}



Computational Problem 2

• Analysis of hashing: What should we expect 
from a good hash function in terms of number offrom a good hash function in terms of number of 
slots hit, length of chains?
– Possible to analyze “ideal” performance analytically, 

but harder than simulating
– Very hard or impossible to analyze performance of 

real hash functions analytically, but easy with 
simulation.

Things to Know

• Performance Measures:
How many slots were used (average)?– How many slots were used (average)?

– What is the minimum for slots used?
– What is the longest chain ever?
– What is the average for longest chain?
– What is the expected cost?

• Issues:• Issues:
– Data Distribution
– Fill factor
– Table size



Computational Example 3

• Do you know an algorithm to compute a square 
root?root?

• Assuming that you know how to multiply, can 
you think of a way to compute square roots?

• Guess/convergence testing is a fundamental 
concept for many numerical methods.

Algorithm
double squareRoot(double val) {
double lower, upper;
upper = val;
if (val < 1) lower = 0;
else lower = 1;
while ((upper – lower) > EPSILON) {
double curr = (upper + lower)/2.0;
if ((curr * curr) > val) upper = curr;
else lower = curr;

}
}


