Reliable Multicast

Srinidhi Varadarajan

Introduction

- Need to reliably deliver multicast data from a group of senders to a group of receivers.
- Highly application dependent. Not all applications require strong semantics
- Multicast Choices
 – In order delivery vs out of order delivery. Applications using idempotent operations don’t need in order delivery
 – Replicated data vs. single data source
- Highly desirable to use underlying IP multicast framework

Reliability & Multicast: Design Choices

- Unicast reliability has two choices:
 – Sender retransmits on timeout e.g. TCP
 – Receiver requests retransmission e.g. NETBLT
- Sender retransmissions are not suitable for reliable multicast.
 – Receivers can cause ACK implosion
 – Sender needs to track changing state of multiple receivers
 – No concept of single congestion window, RTT estimate. Different receivers may be on different bottleneck links

Reliability & Multicast

- Specification of transmission unit.
 – Shared communication state: e.g. TCP seq. numbers
 – Application data units, e.g. block 5 of file xyz.
- Shared communication state migrates poorly.
 – Sequence numbers are arbitrary. Receivers that join late have no idea what they’ve missed

SRM Framework

- Data has unique persistent names:
 – Globally unique source ID and locally unique page id.
 – IDs are persistent.
- Senders multicast data to the entire group.
- Receivers detect loss by finding gaps in the sequence number space.
- On detecting a gap, a receiver waits for a random amount of time (dependent on its distance to the sender) and multicasts a retransmission request.
- Any node can respond to the retransmission request. A sender waits a random amount of time (dependent on its distance to the receiver) and multicasts the requested packet.
- Senders discard duplicate requests within a certain interval.

SRM Framework

- Multicast group members periodically send session messages.
 – Session messages are bandwidth controlled, using a mechanism similar to RTCP.
 – Session messages are used to indicate highest sequence number and timestamps. Timestamps are used to estimate round-trip delays.
- Random timers are uniformly distributed in the range: $\left[\left(C_1d_{\text{ar}}, C_1+C_2d_{\text{ar}}\right]\right.$
- Adaptive adjustment of timer constants is possible. Increased request delay can be traded off against lower probability of duplicate requests/responses.
Recommended Reading

- “A Reliable and Efficient Protocol for Broadband Broadcast Networks”, Eramilli and Singh, SIGCOMM 88
- “RMTP: A Reliable Multicast Transport Protocol”, Lin and S. Paul, INFOCOM 96