THE USER ACTION FRAMEWORK

- All about what users *think, do, and see* while interacting with a computer
 - *THINK* – Cognitive actions
 - *DO* – Physical actions
 - *SEE* – Perceptual actions
THE USER ACTION FRAMEWORK

• **Thinking** applies to two areas:
 * *Planning* of physical actions
 * *Assessment* of outcome via feedback

• **Doing** applies to one area:
 * *Physical actions*

• **Seeing** applies to all areas:
 * Planning/Translation – Seeing visual cues to determine plan for actions
 * *Physical actions* – Seeing objects to manipulate
 * *Assessment* – Seeing feedback representing outcome
THE USER ACTION FRAMEWORK

• All usability concepts can be organized on this framework for
 * Usability inspection
 * Usability problem reporting
 * Usability data management
 * Design guidelines

• Summary of structure for Design Guidelines
 * Planning
 - High-level planning
 - Translation
 * Physical actions
 * Assessment
HIGH-LEVEL PLANNING

High-level planning: User decides what to do, determining intentions

- User goals, task decomposition
- Overall metaphor, user's model of system
- Examples
Translation

Translation: User plans physical actions to carry out intentions

- Meaning / effectiveness of visual cues
 * Clarity, completeness
 * Error avoidance, consistency

- Presentation of visual cues
 * Legibility, noticeability, complexity
 * Layout, grouping

- Task structure and interaction control
 * Support direct manipulation
 * Support human memory limitations

- Preferences and efficiency
 * Alternatives and shortcuts, efficiency of task structure

- Examples
PHYSICAL ACTIONS

Physical actions: User makes inputs to system

• Perceiving objects
 * Noticeability, legibility, readability
 * Visual disabilities

• Manipulating objects
 * Physical control – manual dexterity
 * Physical layout – distance to move, size of objects
 * Physical complexity of interaction (e.g., device design)
 * Physical disabilities

• Examples
ASSESSMENT

Assessment: User knows what happened

• Existence of feedback (e.g., missing feedback)

• Presentation of feedback
 * Noticeability, legibility, readability
 * Layout, grouping

• Meaning / effectiveness of feedback
 * Ability to know if have error
 * Clarity, completeness
 * Correctness, relevance

• Examples
SELECTED DESIGN GUIDELINES FOR HIGH-LEVEL PLANNING

• Provide clear model of how users view system in terms of tasks
• Make possibilities clear for what users can do at every point
• Decompose tasks logically
• Keep locus of control with users
SELECTED DESIGN GUIDELINES FOR USER TRANSLATION

• Provide effective affordances – visual cues (e.g., in labels, data field formats, icons) that help users get access
 * Help users get started
 * Help users predict outcome of actions (feedforward)
 * Use precise wording in labels for menus, buttons, icons, fields
 * Use consistent wording in labels for menus, buttons, icons, fields
 * Use appropriate layout, grouping by function
 * Support human memory limits with recognition over recall
SELECTED DESIGN GUIDELINES FOR USER TRANSLATION

• Prevent errors: Help users make correct translations and avoid incorrect translations
 * "To err is human; forgive by design"
 * Make inappropriate actions unavailable (e.g., graying out)
 * Guide users with correct data entry (e.g., with data formats, field size, defaults)
 * Be consistent to prevent errors (including across products)
 * Request user confirmation to prevent errors (especially for potentially destructive actions)
 - Give enough alternatives (e.g., not "Deleting your files" with just OK as only possible response)
SELECTED DESIGN GUIDELINES FOR USER TRANSLATION

• Help users recover from errors – provide clear way to undo (multiple levels), reverse actions, offer helpful/constructive error messages

• Keep locus of control with users (e.g., changing folder name "IRS" to "Irs"

• Design for preferences/efficiency

 * Anticipate likely related tasks, support task thread continuity
SELECTED DESIGN GUIDELINES FOR USER PHYSICAL ACTIONS

• Provide effective physical affordances – help in doing actions
 * Size: Support manual dexterity and hand-eye coordination limits by making selectable objects large enough
 * Location/proximity: Place related objects close together

• Design for physical disabilities – limited motion, motor control, vision, hearing

• Avoid user fatigue from too much movement
SELECTED DESIGN GUIDELINES FOR USER ASSESSMENT (OF OUTCOME)

• Provide feedback – no news is no news
• Present feedback, error messages promptly
• Help users recognize errors
• Make system take blame for errors
 * Use helpful, constructive error messages, not "cute" unhelpful messages
 * Be positive to encourage; avoid violent, negative, or demeaning terms
 - Error messages can have great psychological impact on users
• Provide progress report on long operation (e.g., percent-done indicator)
SELECTED DESIGN GUIDELINES FOR USER ASSESSMENT (OF OUTCOME)

• Employ user-centered wording in outcome presentation, messages, and feedback

• Limit density in presentation of results
 * Control local density - imaginary quadrants

• Accommodate different user classes

<table>
<thead>
<tr>
<th>Lead</th>
<th>Novice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Follow</td>
<td>Intermittent</td>
</tr>
<tr>
<td>Get out of the way</td>
<td>Expert</td>
</tr>
</tbody>
</table>

• Avoid anthropomorphism – attributing human characteristics to non-human objects)

• Avoid poor attempts at humor

DESIGN GUIDELINES: CONCLUSIONS

- Be cautious; think and interpret guidelines
 * In application, they can conflict and overlap
- Design by guidelines, not by personal opinion