Introduction to Information Retrieval

C.J. “Keith” van Rijsbergen
Computing Science
Glasgow University
Some meta thoughts

<table>
<thead>
<tr>
<th>A priori</th>
<th>A posteriori</th>
</tr>
</thead>
<tbody>
<tr>
<td>CWA</td>
<td>OWA</td>
</tr>
<tr>
<td>Adaptive</td>
<td>Non-adaptive</td>
</tr>
<tr>
<td>Data driven</td>
<td>Theory driven</td>
</tr>
<tr>
<td>Information</td>
<td>Knowledge</td>
</tr>
<tr>
<td>Contingency</td>
<td>Necessity</td>
</tr>
<tr>
<td>Ostensive</td>
<td>Extensive</td>
</tr>
</tbody>
</table>

Practice: Web
Electronic Publishing
Task-oriented IR
Data Mining
Knowledge Discovery
Distance learning

Experiments: TREC
HC1
Visualisation
Work in Context, Cognitive approaches
Cross - lingual
Cross - media
Corpus-based IR (inc. wordnet, etc)
Digital Libraries
Theory: Knob twiddling
Data fusion
Authority/importance models
Logic + Uncertainty models
Language models
Summarisation
Discrimination/Representation
IR + DBMS (inc XML etc)
Clustering the web
Visualising the web
Living with single term queries
Living with no queries
Trading media (text helps images!)
Temporal dimensions (topics, events)
Evaluation (Time to dump ‘P and R’?)
NLP in IR

.................
<table>
<thead>
<tr>
<th>Category</th>
<th>Exact Match</th>
<th>Partial (best) Match</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inference</td>
<td>Deduction</td>
<td>Induction</td>
</tr>
<tr>
<td>Model</td>
<td>Deterministic</td>
<td>Probabilistic</td>
</tr>
<tr>
<td>Classification</td>
<td>Monothetic</td>
<td>Polythetic</td>
</tr>
<tr>
<td>Query Language</td>
<td>Artificial</td>
<td>Natural</td>
</tr>
<tr>
<td>Query Definition</td>
<td>Complete</td>
<td>Incomplete</td>
</tr>
<tr>
<td>Query Dependence</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Items wanted</td>
<td>Matching</td>
<td>Relevant</td>
</tr>
<tr>
<td>Error response</td>
<td>Sensitive</td>
<td>Insensitive</td>
</tr>
<tr>
<td>Logic</td>
<td>Classical</td>
<td>Non-classical</td>
</tr>
<tr>
<td>Representation</td>
<td>A priori</td>
<td>A posteriori</td>
</tr>
<tr>
<td>Language Models</td>
<td>Logical</td>
<td>Statistical</td>
</tr>
</tbody>
</table>

Matching

- exact/partial match e.g SQL/Dice
- Boolean matching (Fairthorne, 50)
- co-ordination level matching (Cleverdon, 60)
- cosine correlation (Salton, 70)
- probabilistic (ranking principle) (SER, 80)
- logical uncertainty principle (CvR, 90)
- plausible inference (Croft, 90)

VS
PRP
LUP
NET
Inference

- Deduction/Induction: A, A→B infer B
- Cluster Hypothesis
- Association Hypothesis
- P(term₁|term₂)

Cluster Hypothesis

If document X is closely associated with Y, then over the population of potential queries the probability of relevance for X will be approximately the same as the probability of relevance for Y, or in symbols

\[P(\text{relevance}|X) \sim P(\text{relevance}|Y) \]
Association Hypothesis

If one index term is good at discriminating relevant from non-relevant documents, then any closely associated index term is also likely to be good at this.

Discrimination Gain Hypothesis
(hidden variables)

Under the hypothesis of conditional independence the statistical information contained in one index term about another is less than the information contained in either index term about relevance.

\[P(X,Y|W) = P(X|W) \times P(Y|W) \]

\[I(X,Y) < I(X,W) \text{ or } I(Y,W) \]

Are there other explanatory variables?
Does W exist as a variable?
Models

• Boolean
• Vector Space (metrics) - mixture of things
• Probabilistic (3 models)
• Logical (implication) - what kind of logic
• (Algebraic model)
• Cognitive (users)
• Language (distributions) - Bose-Einstein?

Partial Models
Classification

* Studied early in IR (1960s, 1970s). Lost favour in 80s

* Returned in 90s for different applications (e.g. browsing)

* Van Rijsbergen did early work on applying more formal techniques, e.g. single-link hierarchies - followed by...

* Sparck Jones did early work on term clustering

* Salton and group did many experiments with different clustering techniques

* Roger Needham did a thesis on clustering (!)

* Bruce Croft did his thesis on clustering

Celestial Emporium of Benevolent Knowledge

“On those remote pages it is written that animals are divided into (a) those that belong to the Emperor, (b) embalmed ones, (c) those that are trained, (d) suckling pigs, (e) mermaids, (f) fabulous ones, (g) stray dogs, (h) those that are included into this classification (i) those that tremble as if they were mad, (j) innumerable ones, (k) those drawn with a very fine camel’s hair brush, (l) others, (m) those that have just broken a flower vase, (n) those that resemble flies from a distance.”

Borges
Query Language

• Artificial/Natural (web)
• multilingual/cross-lingual
• images
• none at all!

Query Definition

• Complete/Incomplete
• Independence/Dependence
• Weighted/Unweighted (tf × idf)
• Query expansion/one shot (feedback, web)
• Sense disambiguation
• Cross-lingual
Query Dependence

- Ostensive retrieval
- hyperlinks
- citation links
- filtering
- collaborative filtering
- authority/importance

Items Wanted

- Matching/Relevant or Correct/Useful
- The function of a document retrieval system cannot be to retrieve all and only the relevant documents...but to *guide* the patron in his search for information (Maron)
- Topical/tasks
- Meaning/content
Error Response

- Precision: error where an irrelevant is retrieved
- Recall: error where a relevant document is not retrieved
- Trade-off
- How to cope with lack of recall
- Cranfield → Ideal test collection → TREC → ????

Representation of Information

- Discrimination without Representation (specificity)
- Representation with Discrimination (exhaustivity)

...defining a concept of ‘information’,.....[that] once this notion is properly explicated a document can be represented by the ‘information’ it contains (CvR, 1979)
Logic

If Mark were to loose his job, he would work less
If Mark were to work less, he would be less tense

If Mark were to loose his job, he would be less tense

A → B, B → C infer A → C

\[M \cap (N^C \cup N) = M \]
\[(M \cap N^C) \cup (M \cap N) = M \]

\[M \otimes (N^C \oplus N) = M \]
\[(M \otimes N^C) \oplus (M \otimes N) = \Phi \neq M \]

Interaction (Aboutness)

Objects: documents, queries → Relevance

Model

Observable (States) → ??
Relevance/Aboutness is Interaction/User dependent

IF THERE'S ONE THING MORE BORING THAN YOUR HOLIDAY VIDEOS NEVILLE IT'S YOU BANGING ON ABOUT YOUR INDEXING SYSTEM