Retrieval of Still Images by Content

John P Eakins

Institute for Image Data Research
University of Northumbria at Newcastle
United Kingdom

Focus of talk

- What techniques are currently used for image retrieval?
- How do they work?
- How successful are they?

Emphasis is on Content-based image retrieval (CBIR): retrieval on the basis of features automatically extracted from the images themselves
Images and image archives in widespread use. Applications include:

- Crime prevention (fingerprint and face matching)
- Intellectual property (trademark image registration)
- Engineering and architectural design
- Journalism and publishing (stock shot photographs)
- Medical diagnosis (radiography)
- Web searching

Remarkably little currently known about user needs

Three levels proposed, in order of increasing abstraction:

- **Level 1** - retrieval by low-level or *primitive* attributes
 - shape
 - texture
 - colour
 - spatial location

- **Level 2** - retrieval by derived or *logical* attributes
 - objects of given type
 - named individuals or objects

- **Level 3** - retrieval by subjective or *abstract* attributes
 - specified events or types of activity
 - emotional or symbolic significance
Traditional methods of image retrieval

Available techniques include:
- Human memory
- Keyword indexing
- Browsing aids
- Classification schemes

Advantages:
- Indexing expertise widely available in image libraries
- Can use wide range of text retrieval software

Disadvantages:
- Labour-intensive
- Can be subjective & unreliable
- Difficult to capture concept of image similarity

Content-based Image Retrieval

- Provides objective and automatic image matching
- Queries can be formulated visually
- CBIR now reasonably well established at level 1 (retrieval by primitive feature):
 - at least three commercial systems available
 - over 50 experimental systems reported
- Large volume of research into improved techniques
How does CBIR work?

- Most techniques operate by comparing *feature vectors* measuring key aspects of image appearance such as colour, texture or shape, e.g.

<table>
<thead>
<tr>
<th>Feature:</th>
<th>Col1</th>
<th>Col2</th>
<th>Tex1</th>
<th>Tex2</th>
<th>Shp1</th>
<th>Shp2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Image 1</td>
<td>0.36</td>
<td>0.72</td>
<td>0.18</td>
<td>0.22</td>
<td>0.94</td>
<td>0.31</td>
</tr>
<tr>
<td>Image 2</td>
<td>0.36</td>
<td>0.71</td>
<td>0.93</td>
<td>0.75</td>
<td>0.31</td>
<td>0.88</td>
</tr>
</tbody>
</table>

- Overall similarity between images 1 & 2 then computed using suitable metric such as Euclidean distance:

\[
L_2 = \sqrt{\sum_{i=1}^{n} (f_i - g_i)^2}
\]

Retrieval by colour

- Commonest form of matching compares histograms of colour distribution in query and stored images
- Other techniques include colour moments and colour sets
- Works well, especially if spatial distribution of colour taken into account
- Does not depend on accurate image segmentation
- Histogram intersection technique calculates colour similarity between two images \(A \) and \(B \) as

\[
\sum_{j=1}^{n} \min(A_j, B_j)
\]
Retrieval by texture

- Matching typically compares statistics computed from intensity distribution in query and stored images
- Works well on own or in combination with colour
- Accurate image segmentation not usually required

Texture measures

- Earliest texture measures (e.g. Tamura’s coarseness, contrast and directionality) based on second-order statistics of intensity distribution
- More recent measures based on coefficients derived from image transformations e.g. using Gabor filters (Manjunath and Ma)
Retrieval by shape

- Matching typically compares shape features computed from selected regions within query and stored images.
- Works adequately for isolated objects, less well for natural scenes.
- Critically dependent on accurate image segmentation.

Shape matching

- Most popular techniques rely on calculating and comparing shape feature vectors.
- Features may be simple (aspect ratio, circularity) or complex (Fourier descriptors, Zernike moments).
- Features may be global (describing entire shape) or local (describing part of object boundary).
Problem:
- Object boundaries can’t always be extracted reliably from natural images by automatic means

Ways of overcoming:
- Identify more intelligent segmentation techniques
 - significant research activity, but no breakthroughs yet
- Use techniques to reveal local image structure which don’t depend on segmentation, e.g:
 - wavelet transformation
 - filtering with Gaussian derivatives

Retrieval by appearance (Manmatha & Ravela)

- Technique based on filtering by Gaussian derivatives
- Requires no prior segmentation of image
- Looks promising!
Query formulation

- Most current CBIR systems based on query-by-example paradigm
- Alternative techniques include:
 - Colour and texture palettes
 - Drawing tools
 - Freehand sketch
 - Structured browsing
- Relevance feedback facilities provided in many experimental systems

Efficiency considerations

- Sequential searching of large databases computationally infeasible
- Traditional text-based approaches such as inverted files not generally usable
- Multidimensional indexes such as R-trees, TV-trees or SS-trees usable, but not very efficient with large numbers of features
- Newer techniques such as vantage objects seem promising
Commercial CBIR software

Three main commercial systems for still images:

■ QBIC (IBM)
 – http://www.qbic.almaden.ibm.com/
■ VIR Image Engine (Virage)
 – http://www.virage.com/online
■ VisualRetrievalWare (Excalibur)
 – http://www.excalib.com/

All operate exclusively at level 1

Commercial software - 2

■ Offers retrieval by combination of features, e.g. colour, shape, texture, grey level or text keyword
■ Available in standalone form, as application development tool, or as add-on to standard DBMS packages
■ QBIC used at a number of art libraries
■ Virage provides image search capability for Alta Vista Web search engine
■ Excalibur provides technology for Yahoo! Image Surfer
Experimental CBIR software

Several experimental systems available on Web, including

- Photobook (MIT)
 - http://www-white.media.mit.edu/vismod/demos/photobook/
- WebSEEk (Columbia University)
 - http://disney.ctr.columbia.edu/WebSEEk/
- MARS (University of Illinois)
 - http://jadzia.ifp.uiuc.edu:8001/
- Surfimage (INRIA)
 - http://www-syntim.inria.fr/htbin/syntim/surfimage/surfimage.cgi

How effective is CBIR at primitive level?

- Current techniques for colour and texture matching reasonably successful
- Shape matching techniques much less effective in mimicking human similarity judgements
- Some newer techniques seem promising - but little independent evidence of effectiveness
- Current techniques good enough for use in specialized applications (e.g. colour matching of fabrics)
- Current techniques not good enough to support end-user searching for general applications
Retrieval by semantic feature

- Still a research field - commercial application most unlikely in near future
- Research at level 2 just beginning to take off. Main current approaches:
 - Whole-image scene classification (normally statistical)
 - Model-based object recognition
 - Statistics-based region classification
 - Adaptive learning of image semantics
- No worthwhile progress yet at level 3

Techniques for whole-image scene classification

- Scene classification useful both as initial filter and aid to object interpretation
- Examples from literature include:
 - IRIS (Hermes et al) - classifier trained with combined colour, texture, and shape information
 - Power spectrum analysis (Oliva et al) for natural/artificial and open/closed classification
 - Colour and texture-based city/landscape and forest/mountain classification (Vailaya and Jain)
Automatic scene labelling (IRIS)

- Colour, texture and contour information automatically extracted from image
- Graph grammar used to generate object descriptors from low-level features
- Human experts still needed to create and modify object definitions

Model-based object recognition

- Technique based on building detailed model of class of object to be recognized
- First reported use of technique in Brooks’ aircraft recognition system ACRONYM
- Best-known current approach probably that of Forsyth et al, used to identify horses and unclothed human bodies. Technique involves three stages:
 - segmenting image into regions using edge, colour and texture information
 - generating possible descriptions of each region identified
 - classifying objects from constituents
Statistical methods for object recognition

- Rely on statistical associations between primitive feature values and known semantic labels
- Allow automatic labelling of image regions either by type of object (car) or material (sand)
- Variety of techniques used, including Bayesian classifiers and neural networks. Examples include:
 - Region labelling with neural networks (Campbell et al)
 - Simple Semantics (Lew et al)
 - Visual classes (Schiele and Crowley)

Adaptive semantic retrieval techniques

- Most techniques based on extension of relevance feedback principle. Examples include:
 - FourEyes (Minka and Picard)
 - Semantic Visual Templates (S F Chang et al)
 - warping feature space (Lee et al)
 - Visual apprentice (Jaimes and Chang)
- Systems capable of learning from experience - hence potentially quite powerful
FourEyes (Minka and Picard)

- Tool for power annotation and retrieval of images:
 - User annotates selected regions of image
 - System learns association between semantic labels and primitive image features
 - User can then query database for all images containing specified semantic labels

- Results interesting rather than impressive

Current state of semantic image retrieval techniques

- Growing body of research into topic - some promising results

- Main current approaches have advantages and drawbacks:
 - model-based techniques can draw on high-level reasoning, but are domain-specific and incapable of learning
 - statistical techniques less domain-specific but lack deep knowledge or ability to learn
 - adaptive techniques can continue to learn, but depend crucially on quality of user input
CBIR and multimedia

- CBIR may be of most use in combination with other types of retrieval cue in multimedia systems:
 - Some evidence of synergy between text-based and content-based image indexing (e.g. Sclaroff, 1999)
 - Informedia video retrieval system (Wactlar, 1996) successfully combines text, CBIR and sound retrieval
 - Content-based navigation (Lewis, 1997), applying CBIR techniques to hyperlinks, appears promising

- Little yet known about how best to combine different types of retrieval cue in multimedia systems

Issues for further research

- Are current techniques for shape, colour and texture retrieval going to get much better?
- Are we wasting our time looking for better ways of segmenting images?
- Is automated semantic image retrieval an achievable goal?
- Is content-based navigation a better idea than content-based retrieval?
- Should we be putting all our effort into video rather than still image retrieval techniques?
- Can we train up search intermediaries sufficiently skilled to overcome CBIR’s current limitations?
- Do we really know anything about user requirements?