Lecture 7 - BG 2.7

So far, we just considered data transfer:

SN=0
RN=0

must run special protocol at these three points

What if:
- B crashes at time x?
- The link crashes at time x?
- A crashes at time x?

Also:
- What should A (or B) do when the higher layer closes the connection?

Finally:
- What correctness criterion should an initialization/termination algorithm meet?
Correctness: delivered = prefix(sent)

Solution:

- Each node will partition its time axis into 2 or 4 periods
 - Initiating (Master only)
 - Up
 - Disconnecting (Master only)
 - Down

- Requests to initiate and disconnect come from higher protocol layer.

- We will use a protocol separate from the data transfer for initiation and disconnection
 - It uses stop & wait
 - It has 4 messages
 - INIT (SN = 1)
 - ACKI (RN = 0)
 - DISC (SN = 0)
 - ACKD (RN = 1)

 - The SN, RN’s are different than those used in data transfer
• 1st protocol: Master/Slave
 Node A always decides when to initiate or disconnect.

• Again assume FCFS delivery (may be violated at layer 4)

```
  INIT D0
  ACKI ACK ACKD
  DISC
  Initiating  UP  Disconnecting  Down
  Up  Down

  SN=1  RN=0  SN=0  RN=1
  A:

  B:
  RN=1
  ACKI  ACK  ACKD
  Up  Y  Z  Down
```

• What happens if B or link crashes?
 - at Y?
 -- A’s go back n or selective repeat will retry to send data D_i until higher layer at A issues disconnect
 - at Z?
 -- A just keeps sending DISC until link or B comes up, after which B will send ACKD & all continues as usual
• When does A send DISC?
 - When higher protocol layer decides to disconnect
 - In case of multiaccess link with polling

- Can any A->B data still be in transit when B goes from up to down?
 - No, due to FCFS delivery order.

• DISC has one other use, at DLC layer
 - To change which pair communicates in a multiaccess medium (e.g., polling)
2.7.3 - Balanced link initialization protocol (see Fig. 2.45 in [BG])

- Either endpoint can send INIT; both can overlap

- Solution: Always piggyback ACKI/ACKD on any INIT, DISC. In addition, send ACKI, ACKD as necessary.

- When node receives ACKI/ACKD in same frame as INIT/DISC, act on ACK first.

- "3 way handshake" -> used in transport protocols, but with out-of-order packet delivery.

- Sometimes 4-way occurs - see right end of Fig. 2.45 (BG).

- A node considers link up (down) if it is up (down) according to both A-B master/slave protocol and the B->A protocol.

- Correctness (safety property): Both sides reach the same state (either up or down).
2.7.4 Link initialization in the presence of Node Failures

Suppose a node does not retain state information when it crashes.

- Sometimes a node A sends data, crashes, comes up, sends unrelated data, and confuses ACKS for the earlier data as ACKS for the resent data. This can lead to data that is never reliable.

- See (BG) Fig. 2.46 (I believe "RN 0" should be "RN 1") In Fig. 2.4.6, D'0 is unrelated to D0. (Do belongs to a new, unrelated connection.)

- This happens if the time between INITS is not long enough to guarantee that any data & data-ack in transit are delivered.

- There is no protocol that can solve the problem, assuming link delay is unbounded.

Solutions:

1) Provide small non-volatile memory (1 bit)
2) Use timeout > max propagation delay between INITs
3) Use pseudo-random number in SN field (still no guarantee)