Scaling the Internet Globally
Chapter 4.3
Peterson and Davie

CS/ECPE 5516
Spring 2000
Outline for Tuesday, 27 March 2000

- **10 minutes** Checkpoint: How's class going?

- **15 minutes** Sub-lecture:
 - Subnets (chopping up class B address spaces)
 - Supernets (coalescing class C address spaces)

- **15 minutes** Group exercise:
 - Building your own global Internet

- **10 minutes** IP version 6
How's Class Going

■ How was the midterm?

■ How did project 1 go…
 ● To hard/easy?
 ● Educational?
 ● Suggestions?

■ How have class meetings been going?
 ● Has the class material been too easy, too hard, too slow, too fast, …?

■ Honor code
You studied routing in a homogeneous IP net

Does that scale to...
- Small nets
- World-wide nets
Let's Look at IP Addresses

- In 70's/80's, IP designers chose 2-level hierarchical addresses:

<table>
<thead>
<tr>
<th>Network number</th>
<th>Host number</th>
</tr>
</thead>
</table>

- Why was this a very bad thing by 2000?

 - Is the hierarchy or the 2 levels or both bad?
Explosion in # nets => Running out of IP address space!

Fundamental IP design choice:
- Class C addresses (2^{24} nets of <2^{8} hosts)
- Class B addresses (2^{16} nets of <2^{16} hosts)
- Every time a C or B net # is assigned, it kills a whole range of IP addresses

Inefficiency results:
- class C with 2 hosts (2/255 = 0.78% efficient)
- class B with 256 hosts (256/65535 = 0.39% efficient)
Very Bad Thing #1

- **Explosion in # nets => Routing doesn't scale!**

<table>
<thead>
<tr>
<th>Network number</th>
<th>Host number</th>
</tr>
</thead>
</table>

- **Recall the "beauty" of IP routing:**
 - Routing tables are based on # nets, not #hosts
 - But #nets is in tens of thousands today = big tables

- **Problems**
 - Routing tables do not scale
 - Route propagation protocols do not scale
Ways to Solve Problems

- Running out of IP addresses...
 - Assign multiple & contiguous class-C addresses to a new network
 - Temporary solution until IPv6 with 128-bit IP addresses

- Scaling routing...
 - Add 3rd level to IP hierarchy
 - Example:
 - Assign ISP one class B address
 - ISP subnets address space for 2^{16} small companies, each having up to 2^{10} hosts
 - Without subnetting, need 64 class B addresses!
Subnetting (To solve route scaling)

- Add another level to address/routing hierarchy: \textit{subnet}
- \textit{Subnet masks} define variable partition of host part
- Outside net w/ subnets, subnetting is invisible

<table>
<thead>
<tr>
<th>Network number</th>
<th>Host number</th>
</tr>
</thead>
</table>

Class B address

\begin{tabular}{c|c}
11111111111111111111111111 & 00000000 \\
\end{tabular}

Subnet mask (255.255.255.0)

<table>
<thead>
<tr>
<th>Network number</th>
<th>Subnet ID</th>
<th>Host ID</th>
</tr>
</thead>
</table>

Subnetted address
Subnet Example (Fig. 4.25)

Subnet #: 128.96.34.0

Subnet #: 128.96.34.128

Subnet #: 128.96.33.0
Subnet Example

Forwarding table at router R1:

<table>
<thead>
<tr>
<th>Subnet #</th>
<th>Mask</th>
<th>Next Hop</th>
</tr>
</thead>
<tbody>
<tr>
<td>128.96.34.0</td>
<td>255.255.255.128</td>
<td>interface 0</td>
</tr>
<tr>
<td>128.96.34.128</td>
<td>255.255.255.128</td>
<td>interface 1</td>
</tr>
<tr>
<td>128.96.33.0</td>
<td>255.255.255.0</td>
<td>R2</td>
</tr>
</tbody>
</table>
Subnet Example (Fig. 4.25)

If (Dest & Mask) = Subnet-Number then use Next-Hop:
(Dest: 128.96.34.15 & Mask: 255.255.255.128) = 128.96.34.0, so use interface 0
Forwarding Algorithm

D = destination IP address
for each entry (SubnetNum, SubnetMask, NextHop)
 D1 = SubnetMask & D
 if D1 = SubnetNum
 if NextHop is an interface
 deliver datagram directly to D
 else
 deliver datagram to NextHop
 else
 deliver datagram to NextHop

- Use a default router if nothing matches
- Not necessary for all 1s in subnet mask to be contiguous
- Can put multiple subnets on one physical network—subdivides LAN so traffic is forced through router even though direct delivery possible
Supernetting (To solve running out)

- Supernetting is used to aggregate routes
 - Assign block of contiguous network numbers to nearby networks
- Called CIDR:
 - Classless Inter-Domain Routing
- Restrict block sizes to powers of 2
- Use a contiguous bit mask (CIDR mask) to identify block size
- All routers must understand CIDR addressing
 - Routing involves *longest prefix match*
Group Exercise on 4.3.3

Divide yourselves into groups; fill in table:

<table>
<thead>
<tr>
<th>How many backbones?</th>
<th>Internet in 1989</th>
<th>in 2000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goal of routing is ???</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distance vector or shortest-path run over all netids?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>True/false: every backbone router's table lists every network number</td>
<td></td>
<td></td>
</tr>
<tr>
<td>True/false: economic incentive exists to do evil routing</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Internet Structure

Internet in 1990

- NSFNET backbone
- BARRNET regional
- Berkeley
- PARC
- NCAR
- Westnet regional
- UNM
- UA
- MidNet regional
- UNL
- KU
- ISU
- Stanford
Internet Structure

Today: multiple "Autonomous Systems" (ASes)

1. Stub AS
2. MultiHomed AS
3. Transit AS
The Internet is composed of many autonomous systems (AS)
- Each AS is operated largely independently
- Policies and even protocols within an AS may vary
- Some standardization is needed, of course

Types of routing protocols
- Interior Gateway Protocol (IGP): a routing protocol operating within an AS
- Exterior Gateway Protocol (EGP) or Interdomain Routing Protocols: a protocol to route between ASes
See Stallings Fig. 16-10

See link on Web site
Popular **Interior Gateway Protocols**

- **RIP: Route Information Protocol**
 - developed for XNS
 - distributed with Unix
 - distance-vector algorithm
 - based on hop-count

- **OSPF: Open Shortest Path First**
 - recent Internet standard
 - uses link-state algorithm
 - supports load balancing
 - supports authentication
EKP: Exterior Gateway Protocol

- Overview
 - designed for tree-structured Internet
 - concerned with \textit{reachability}, not optimal routes

- Protocol messages
 - neighbor acquisition: one router requests that another be its peer; peers exchange reachability information
 - neighbor reachability: one router periodically tests if the another is still reachable; exchange HELLO/ACK messages; uses a k-out-of-n rule
 - routing updates: peers periodically exchange their routing tables (distance-vector)
BGP-4: Border Gateway Protocol

Each AS has:
- one or more border routers
- one BGP *speaker* that advertises:
 - local networks
 - other reachable networks (transit AS only)
 - gives *path* information

Path = "reach netids 128.173 & 192.4.3 via (AS1, AS2)"

Note that between ASes, they use entire AS as nodes in routing list like (AS1, AS2).
BGP Example

- **Speaker for AS2 advertises reachability to P and Q**
 - network 128.96, 192.4.153, 192.4.32, and 192.4.3, can be reached directly from AS2

- **Speaker for backbone advertises**
 - networks 128.96, 192.4.153, 192.4.32, and 192.4.3 can be reached along the path (AS1, AS2).

- **Speaker can cancel previously advertised paths**
Evil Routing Examples

- I'm a transit AS.
 I get paid by # packets I transit, not latency

- So my optimal decision:
 Anytime anyone sends me a packet, I immediately dump it back out on someone else's AS!

- So end-user routes could get longer!

- Or: I'm a transit AS. I compete with you. I'll manipulate my advertisements to make you vanish/become swamped.

- Or: I've hired an incompetent router programmer. So I'll still make you vanish or become swamped!
IP Version 6

- Features
 - 128-bit addresses (classless)
 - multicast
 - real-time service
 - authentication and security
 - autoconfiguration
 - end-to-end fragmentation
 - protocol extensions

- Header
 - 40-byte “base” header
 - extension headers (fixed order, mostly fixed length)
 - fragmentation
 - source routing
 - authentication and security
 - other options