Internetworking

- **Motivation**
 - Heterogeneity
 - Scale

- **IP is the glue that connects heterogeneous networks giving the illusion of a homogenous one.**

- **Salient Features**
 - Best Effort Service Model
 - Global Addressing Scheme

IP Internet

- **Concatenation of Networks**

- **Protocol Stack**

Service Model

- **Connectionless (datagram-based)**

- **Best-effort delivery (unreliable service)**
 - Packets are lost
 - Packets are delivered out of order
 - Duplicate copies of a packet are delivered
 - Packets can be delayed for a long time

- **Datagram format**

Fragmentation and Reassembly

- Each network has some MTU

 - **Strategy**
 - Fragment when necessary
 - If (MTU < Datagram size) fragment
 - Try to avoid fragmentation at source host
 - Re-fragmentation is possible
 - Fragments are self-contained datagrams
 - Use CS-PDU (not cells) for ATM
 - Delay reassembly until destination host
 - Do not recover from lost fragments

Example

- **Global IP Addresses**
 - **Properties**
 - Globally unique
 - Hierarchical: network + host
 - **Dot Notation**
 - 10.3.2.4
 - 128.96.33.81
 - 192.12.69.77

© 1999, Scott F. Midkiff
Datagram Forwarding

- **Strategy**
 - every datagram contains destination’s address
 - if directly connected to destination network, then forward to host
 - if not directly connected to destination network, then forward to some router
 - forwarding table maps network number into next hop
 - each host has a default router
 - each router maintains a forwarding table

- **Example (R2)**

<table>
<thead>
<tr>
<th>Network Number</th>
<th>Next Hop</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>R3</td>
</tr>
<tr>
<td>2</td>
<td>R1</td>
</tr>
<tr>
<td>3</td>
<td>interface 1</td>
</tr>
<tr>
<td>4</td>
<td>interface 0</td>
</tr>
</tbody>
</table>

Address Translation

- **Map IP addresses into physical addresses**

- **Techniques**
 - encode physical address in host part of IP address
 - Problem: Limited by number of bits in the host part of the IP address
 - table-based mapping between IP addresses and link layer addresses

Address Resolution Protocol (ARP)

- **Maps IP addresses to Ethernet Addresses**
- **ARP responses are cached**

<table>
<thead>
<tr>
<th>ARP Query</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethernet: 0A:03:21:60:09:FA</td>
</tr>
<tr>
<td>IP: 130.245.20.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ARP Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethernet: 0A:03:23:65:09:FB</td>
</tr>
<tr>
<td>IP: 130.245.20.2</td>
</tr>
</tbody>
</table>

Request Format

- **HardwareType**: type of physical network (e.g., Ethernet)
- **ProtocolType**: type of higher layer protocol (e.g., IP)
- **HLEN & PLEN**: length of physical and protocol addresses
- **Operation**: request or response
- **Source/Target-Physical/Protocol addresses**

Usage Notes

- table entries timeout in about 10 minutes
- update table with source when you are the target
- update table if already have an entry
- do not refresh table entries upon reference

ARP Packet Format

<table>
<thead>
<tr>
<th>Hardware type</th>
<th>Protocol Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0x0800</td>
</tr>
<tr>
<td>HLen</td>
<td>PLen</td>
</tr>
<tr>
<td>48</td>
<td>32</td>
</tr>
<tr>
<td>Operation</td>
<td></td>
</tr>
</tbody>
</table>

Internet Control Message Protocol (ICMP)

- **Echo (ping)**
- **Redirect (from router to source host)**
- **Destination unreachable (protocol, port, or host)**
- **TTL exceeded (so datagrams don’t cycle forever)**
- **Checksum failed**
- **Reassembly failed**
- **Cannot fragment**