Switching Hardware

- General purpose I/O bus is not enough
 - Bandwidth of 1Gbps can only support three 155Mbps links. Why?

- Design goals
 - Throughput
 - Packets/sec
 - Scalability
 - Number of input/output ports
 - Cost
 - $/port

Throughput

- Can be defined in terms of
 - Total bandwidth: ATM networks
 - Forwarding rate in packets/sec: Switched Ethernet

- Throughput is a function of traffic
 - Need to model traffic accurately

- Traffic modeling parameters
 - Packet arrival time
 - Destination distribution
 - Packet size distribution

Scalability

- Cost is a function of number of I/O ports (n)

- Scalability can be thought of as the rise in cost with increasing n.

- Switch designs also have hardware limitations when the number of ports becomes very large

Switching Fabrics

- Ports communicate with the outside world
 - Optoelectronics

- Ports also support the routing model.
 - E.g. for VC model, ports manage connection setup/routing/teardown

- Fabrics are fast bit pushers. They take data from the input port and move it to an output port.

- Complexity of determining the output port for a packet is handled by the input ports.

- Such fabrics are called self-routing

Performance bottlenecks

- Input port: header analysis, routing table lookup

- Buffering can occur at the
 - Input port
 - Fabric
 - Output port

- Design and implementation of buffers have the greatest impact on performance

- Simple scheme:
 - Input buffering with FIFO queue
 - Drawback: head of line blocking. Max. throughput 59%

- Buffering discipline determines QoS
Every input is connected to every output.
Can handle data arriving at all n inputs simultaneously

- Speed of the output buffer has to be proportional to n
- Complexity of the switch fabric grows as \(n^2 \)

- Assumption:
 - Not all input ports need to get to the same output port simultaneously
 - The design supports no more than \(L \) inputs out of \(n \) to proceed to the output

- Note:
 - Choice of \(L \) is hard. Servers on an output port can ruin the above assumption

- Knockout has 3 components
 - A set of packet filters that determine the inputs destined for the current output
 - A set of knockout concentrators. Each concentrator has \(n \) inputs and \(L \) outputs. Given \(n \) inputs destined for the same output, it selects \(L \) out of them fairly. The remaining \(n - L \) inputs are discarded
 - Fairness implies that no input gets dropped more or less than any other
 - A per output buffer that can accept \(L \) inputs at a time.

- Uses a tennis tournament style knockout system.
- You play division I first, if you lose, you go to division II, if you lose again you go to division III and so on till \(L \)
- If you lose in division \(L \), you’re kicked out.

- Simple option:
 - Speed of output buffer is \(L \) link speed.

- Problem: requires very fast buffers
- Knockout uses a clever round robin buffering scheme with \(L \) parallel buffers and a shifter.
- The fabric writes data to \(L \) buffers simultaneously. The output port reads from one
Knockout switch complexity

- Number of packet filters = n
- Size of output buffer/port = L
- Complexity of concentrator/output port: n * L. This is proportional to n
 - Total cost of concentrators = n^2
- Total complexity is proportional to n^2

Shared Media Switches

- Used a high speed bus to transfer data between input port and shared memory.
- Output port reads data from shared memory.

Shared memory switches

- Offer better resource utilization through statistical multiplexing
- Disadvantage:
 - The speed of the buses between the MUX and memory and DEMUX and memory has to scale linearly with number of inputs. This restricts the use of this design
- Shared memory switches are commercially very common.