Bridges and Switches

- Repeaters cannot be used as LAN switches
 - Length limitations are violated
- A LAN switch (bridge) has multiple interfaces
 - It picks up all data from one interface and copies it to the other interface
 - Capacity of a LAN switch is B_n, where B is the bandwidth of each port and n is the number of ports.

Learning Bridges

- Simple optimization to reduce bandwidth usage
 - Learn the direction of the message source.
 - Do not retransmit the message if the source and the destination are in the same direction.

Spanning Tree

- The learning bridge fails when the network topology has a loop.
 - Why?
- Loops are not necessarily bad. They provide redundancy that can be used to recover from failures
- To handle loops, bridges implement the spanning tree algorithm.
 - The spanning tree algorithm imposes a logical tree over the physical topology
 - Data is only transferred along links that belong to the spanning tree

Spanning Tree Algorithm

- Each bridge has unique id (e.g., B1, B2, B3)
- Select bridge with smallest id as root
- Select bridge on each LAN closest to root as designated bridge (use id to break ties)
- Each bridge forwards frames over each LAN for which it is the designated bridge

Spanning Tree Algorithm (contd.)

- Bridges exchange configuration messages called CBPDU's (Configuration Bridge Protocol Data Unit)
 - id for bridge sending the message
 - id for what the sending bridge believes to be root bridge
 - distance (hops) from sending bridge to root bridge
- Each bridge records the current best configuration message for each port
- Initially, each bridge believes it is the root

- Root continues to periodically send config messages
- If any bridge does not receive successive config messages, it starts generating config messages claiming to be the root
 - This is used to recover from root failure
Broadcast and Multicast

- **Forward all broadcast/multicast frames**
 - current practice

- **Learn when no group members downstream**

- **Learning is accomplished by having each member of the multicast group send a frame to bridge multicast address with G in source field**
 - This implies the presence of a downstream receiver

Limitations of Bridges

- **Do not scale**
 - spanning tree algorithm does not scale
 - single large broadcast domains do not scale

- **Do not accommodate heterogeneity**
 - Bridges support ethernet to ethernet, ethernet to 802.5 and 802.5 to 802.5.

- **Caution: beware of transparency**
 - Applications that assume that they are executing on a single LAN will fail.
 - Latency increases in large LANs, so does jitter