Instructors & GTAs

- **Instructors:**
 - Marc Abrams <abrams@cs.vt.edu>
 - Srinidhi Varadarajan <srinidhi@cs.vt.edu>

- **GTAs:**
 - Batul Mirza <bmirza@csgrad.cs.vt.edu>
 - Abhijit Khobare <akhobare@csgrad.cs.vt.edu>
 - GTAs available...
 - Monday-Friday
 - 4:00-6:00 pm
 - In 128 McBryde

Teaching Method

- **Team teaching:**
 - Course topics split between Profs.
 - 1 Professor gives same lecture at both 9:00 & 1:00
 - Same projects, homeworks in both classes

Textbook

Peterson & Davie

Computer Networks: A Systems Approach

©2000

Class Communication

- **Class WWW site:**
 - http://courses.cs.vt.edu/~cs5516/
 - These lecture notes available on Web

- **Class Listserv**
 - cs5516@courses.cs.vt.edu
 - You’re automatically on listerv

CS/ECPE 5516: Assignments

- **~5 Homeworks**
- **Term Project**
 - Gives "hands-on" protocol experience
 - Part 1: Implement reliable data-link protocol
 (due after spring break)
 - Part 2: Add routing
 (due on last class meeting)
 - Done in teams
 - Teams have programming & non-programming roles
- **Exams**
 - Midterm exam
 - Final exam

Class Logistics

- Monday-Friday
- 4:00-6:00 pm
- In 128 McBryde

- GTAs available...
 - Monday-Friday
 - 4:00-6:00 pm
 - In 128 McBryde

- Instructors:
 - Marc Abrams <abrams@cs.vt.edu>
 - Srinidhi Varadarajan <srinidhi@cs.vt.edu>

- GTAs:
 - Batul Mirza <bmirza@csgrad.cs.vt.edu>
 - Abhijit Khobare <akhobare@csgrad.cs.vt.edu>
 - GTAs available...
 - Monday-Friday
 - 4:00-6:00 pm
 - In 128 McBryde

- Instructors:
 - Marc Abrams <abrams@cs.vt.edu>
 - Srinidhi Varadarajan <srinidhi@cs.vt.edu>

- GTAs:
 - Batul Mirza <bmirza@csgrad.cs.vt.edu>
 - Abhijit Khobare <akhobare@csgrad.cs.vt.edu>
 - GTAs available...
 - Monday-Friday
 - 4:00-6:00 pm
 - In 128 McBryde

- Instructors:
 - Marc Abrams <abrams@cs.vt.edu>
 - Srinidhi Varadarajan <srinidhi@cs.vt.edu>

- GTAs:
 - Batul Mirza <bmirza@csgrad.cs.vt.edu>
 - Abhijit Khobare <akhobare@csgrad.cs.vt.edu>
 - GTAs available...
 - Monday-Friday
 - 4:00-6:00 pm
 - In 128 McBryde

- Instructors:
 - Marc Abrams <abrams@cs.vt.edu>
 - Srinidhi Varadarajan <srinidhi@cs.vt.edu>

- GTAs:
 - Batul Mirza <bmirza@csgrad.cs.vt.edu>
 - Abhijit Khobare <akhobare@csgrad.cs.vt.edu>
 - GTAs available...
 - Monday-Friday
 - 4:00-6:00 pm
 - In 128 McBryde

- Instructors:
 - Marc Abrams <abrams@cs.vt.edu>
 - Srinidhi Varadarajan <srinidhi@cs.vt.edu>

- GTAs:
 - Batul Mirza <bmirza@csgrad.cs.vt.edu>
 - Abhijit Khobare <akhobare@csgrad.cs.vt.edu>
 - GTAs available...
 - Monday-Friday
 - 4:00-6:00 pm
 - In 128 McBryde
CS/ECPE 5516: Objectives (1)

■ Understand network architectures, algorithms, and protocols

■ Understand the underlying principles of computer networks
 ● Link and multiaccess protocols
 ● Packet and cell switching
 ● Internetworking and routing
 ● End-to-end protocols
 ● End-to-end data issues
 ● Congestion control
 ● High-speed networking

CS/ECPE 5516: Objectives (2)

■ Understand widely-used and emerging networking technologies and protocols
 ● Ethernet (IEEE 802.3)
 ● Token Rings (FDDI and IEEE 802.5)
 ● Wireless LANs (IEEE 802.11)
 ● Asynchronous Transfer Mode (ATM)
 ● TCP/IP protocol suite + IP version 6

CS/ECPE 5516: Topics

Chapter 1: Foundation
Chapter 2: Direct Link Networks
Chapter 3: Packet & cell switching
Chapter 4: Internetworking and routing
Chapter 5: End-to-end protocols
Chapter 6: Congestion control
Chapter 7: End-to-end data issues
Chapter 8: Security

Graduate Networking Courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Networking Areas</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS/ECPE 5516</td>
<td>Networks, Protocols, Algorithms</td>
</tr>
<tr>
<td>ECPE 5984</td>
<td>Network analysis, Network design, Network management</td>
</tr>
<tr>
<td>ECPE 6504</td>
<td>Advanced topic(s), Emerging technology, Applied and/or theoretical</td>
</tr>
</tbody>
</table>

Prerequisites for This Course (1)

A high-level language programming course

■ A lower-division undergraduate programming course is adequate

■ You must be able to...
 ● Read & understand algorithms in code
 ● Appreciate issues related to software implementation
 ● Write C code, or team with other students who are C programmers for projects

Prerequisites for This Course (2)

A computer organization course

■ Need to understand
 ● Basic principles of computer structures
 ● Data formats
 ● Hardware-software interaction

■ ECPE 2504, CS/ECPE 4504, or the GPIT foundation course, “Fundamentals of Computer Engineering” satisfy this prerequisite

© 1999, Scott F. Midkiff
Additional Prerequisite for NET-2, NET-3

- Calculus-based probability & stat course
 - Need to understand
 - Continuous & discrete probability distributions
 - Probability density & distribution functions
 - Mean, variance, standard deviation, and moments of probability distributions
 - STAT 4714 or equivalent

- And, NET-1 -> NET-2 and NET-2 -> NET-3

Today and Wednesday's Lecture Topics

- History & motivation
- Network architecture (section 2.2)
 - Layered models
 - Definitions and abstractions
 - OSI Reference Model

- Network design issues (section 2.1)
 - Definitions
 - Components
 - Message, packet, and cell switching
 - Resource sharing
 - Functionality
 - Performance

History & Motivation

What's a Network?

- Provides connectivity between computers
- Based on protocols:
 Rules for computers to exchange data

Landmarks in Networking

- First description of Arpanet: early 1960's, for defense
- First packet-switched network: Europe
- First Internetwork: US
- First LAN: Bell Labs building
- First OS to include networking: UNIX + UUCP
- Cataclysmic event leading to invention of Ethernet: insomnia

Networking is Hot!!!

- Internet via Satellite
- 3rd Generation Cellular + WAP Protocols
- Voice over IP
- QoS for Network Video
- Internet phone
- Exponential growth in fiber bandwidth
- … and many others …
Internet Timeline

Growth in # Internet Hosts

Growth in # Domains

Growth in # WWW Sites

NET.WORK.VIRGINIA
- ATM network with Internet access
- Over 400 sites with OC3, DS3, or DS1 service
- Service through Sprint and Vision Alliance (consortium led by Bell Atlantic)

2.2: Network Architecture
Network Architecture
- Think of network architecture in two terms...
 - Box-diagrams (shows organizations)
 - Processes (shows operation)
- Diagrams use *layered model* (Assists in coping with complexity)
- Process description uses *cooperating processes*

A Simple Layered Model
- Application Programs
- Process-to-Process Channels
- Host-to-Host Connectivity
- Networking Hardware
- Decomposes system into simpler, manageable components
- Provides a modular design

Multiple Abstractions for One Layer
- Application Programs
 - Request/Reply Channel
 - Message Stream Channel
 - Host-to-Host Connectivity
 - Networking Hardware
- Process-to-process channel
 - Request/reply interaction
 - Stream of messages

Functions Are Not Always “Layer-able”
- Application Programs
 - Process-to-Process Channels
 - Host-to-Host Connectivity
 - Networking Hardware
 - Network Management
- Some functions may need to interact with multiple layers

Layered Models ... Generalized (1)
- Layer N
 - Provides services to layers N+1 and above
 - Uses services offered by layers N-1 and below
 - May interact with peer layer N entities via protocols
- Distinction between *service, interface, and implementation*

Layered Models ... Generalized (2)
- *services provided to upper layers*
 - service interface
 - Layer N
 - peer-to-peer interface protocol
- *services provided by lower layers*
Layered Models ... Generalized (3)

- **Protocols** are rules for cooperation between peers
 - Peer-to-peer interfaces, e.g. Protocol X defines the interfaces
 - “Protocol” sometimes used to refer to the layer itself, e.g. the entity that realizes Protocol X

- **Service access points (SAPs)** between layers adhere to interface definition
 - Service or layer-to-layer interface

Interfaces and Protocols

- Three components of an interface
 - Visible objects, operations, parameters
 - Rules governing operation sequences
 - Encoding and formatting conventions required for operations & parameters
 - Example: HTTP’s peer interface = docs + GET/PUT

- Protocols are usually restricted to peer layers, whereas interfaces are used in 2 places...

Layered Models ... Generalized (2)

Two kinds of interfaces!

ISO Model

- ISO = International Organization for Standards
- 1980’s: 7-layer Open Systems Interconnect (OSI) model
- OSI
 - protocols fell out of favor
 - 7-layer model remains today
- But 7 layer model is a fiction:
 - Most protocols suites (TCP/IP, ATM) don’t strictly obey model

OSI Terminology for Layering

- **Layer N+1**
 - SAP: Service Access Point (where N+1 accesses N)
 - IDU: Interface Data Unit (passed from N+1 to N)
 - SDU: Service Data Unit (data from N+1)
 - ICI: Interface Control Information (service type, etc.)
 - PDU: Protocol Data Unit (exchanged by peer N entities)

OSI Reference Model

- Application
- Presentation
- Session
- Transport
- Network
- Data Link
- Physical

© 1999, Scott F. Midkiff
Deviation from Strict Layering

- Example: Fiber Distributed Data Interface (FDDI)

<table>
<thead>
<tr>
<th>Layer</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>LLC</td>
<td>Logical Link Control</td>
</tr>
<tr>
<td>MAC</td>
<td>Media Access Control</td>
</tr>
<tr>
<td>PHY</td>
<td>Physical</td>
</tr>
<tr>
<td>PMD</td>
<td>Physical Media Dependent</td>
</tr>
<tr>
<td>SMT</td>
<td>Station Management</td>
</tr>
</tbody>
</table>

Layered Model Example

- Typical protocol “stack” in a UNIX-based TCP/IP environment

```
Application: X, FTP, Telnet
Presentation: XDR
Session: RPC
Transport: TCP, UDP
Network: IP
Data Link: Ethernet, FDDI
Physical      
```

Internet Protocol Graph

- Internet protocols (“TCP/IP”) really uses a four-layer architecture

```
HTTP FTP
TCP
HTTP FTP
UDP
IP
Net 1 Net 2 ... Net n
```

Advantages of Layering (1)

- Data hiding and encapsulation -- data structures, algorithms, etc. in layer aren’t visible to other layers
- Decomposition -- complex systems can be decomposed into simpler pieces
- System can evolve -- you can reimplement a layer (as long as service & interface don’t change)

Advantages of Layering (2)

- Can offer alternate services at layer N+1 that share services of layer N:

```
UDP TCP
Layer 2
```
- Alternate implementations of layer N can co-exist:

```
Layer N+1
Ethernet TokenRing
```
- Layer/sublayer can be simplified/omitted if services aren’t needed
- Can test layers separately (Otherwise protocol testing is intractable!)

Disadvantages of Layering

- Some functions (like FDDI station management) really need to access and operate at multiple layers
- Poorly conceived layers can lead to awkward and complex interfaces
- There may be performance penalties due to extra overhead of layers, for example memory-to-memory copies
- Design of (an older) layer N+1 may be sub-optimal given the properties of (a new) layer N
Physical Layer

- Transmits bit sequence over physical media
- Synchronous or asynchronous
- Defines physical interface, signaling, cabling, connectors, etc.
- May depend on data link protocol
 - IEEE 802.3 (Ethernet):
 - 10Base5 (thick wire)
 - 10Base2 (thin wire)
 - 10BaseT (twisted pair)

Data Link Layer

- Responsible for error-free transmission of packets between “adjacent” or directly-connected nodes

 - Sublayer: Media access control (MAC)
 - Allows multiple nodes to share common transmission media
 - Supports addressing of nodes
 - Sublayer: Logical link control (LLC)
 - Detect, correct errors, ...

Network Layer

- Gets packet through network from source node to destination node
 - Routing over multiple hops (vs. DLL - 1 hop only)
 - Flow control or congestion control
 - Internetworking to allow transmission between different types of networks
- In WAN or internetwork, network layer requires cooperation among peers at intermediate nodes
- Network layer function is minimal in a LAN

Transport Layer (1)

- Provides network-independent, end-to-end message transfer between pairs of ports or sockets
- Ports are destination points for communication that are defined by software
 - Ports are identified by a transport address that identifies (host computer address, port number)
 - Port = application (process) address
 - Established services, like FTP and HTTP, have “well-known” default port numbers (HTTP = port 80)

Transport Layer (2)

- Process A
- Process B
- Ports (Sockets)

Transport Layer (3)

- Transport layers typically provide one of two basic types of service:
 - Virtual circuit or connection-oriented service
 - Transmission Control Protocol (TCP)
 - Datagram or connection-less service
 - User Datagram Protocol (UDP)
Transport Layer: Virtual Circuits

- **Circuit** = electrical connection from A to B
- **Virtual circuits** = logical connection
- Network equivalent of dialing phone number
- Connections maintained for many packet or message transmissions until released
 - Network layer may still use dynamic routing
- **Functions**
 - Translate transport address to network address
 - Segment messages into packets for transmission
 - Pass packets to network layer for delivery
 - Reassemble packets at receiving end

Transport Layer: Datagrams

- Datagram communication is connection-less (vs. virtual circuits)
- New connection is established and released for each packet or message transmitted
 - Packet itself establishes and releases connection
- **Functions**
 - Translate transport address to network address
 - Pass messages to network layer for delivery
 - Each message sent as 1 packet
 - Upper layer responsible for re-ordering and error detection

Session Layer

- Provides name space to tie together different virtual connections (e.g., audio + video)
- Might handle access rights (e.g., use network printer)
- Might multiplex multiple sessions over 1 connection (provided by lower layer)
- Might handle transaction commit & rollback

Presentation Layer (1)

- Preserve semantics (meanings or values) while resolving syntactic (representation) differences
 - Ex: 123.5 E +10 might be represented by different bits on two computers
- In open systems, heterogeneous computers result in heterogeneous representations
 - Characters: ASCII, EBCDIC, Unicode
 - Integers: lengths, 1’s versus 2’s complement
 - Reals: fixed or floats, different float points
 - Byte order: 01234567... or 67452301
 - Structured data
- Network standard data representation used in Internet to solve problem (XDR)

Presentation Layer (2)

- Might do encryption
- Might do compression

Application Layer

- Network applications make up the application layer
- Protocol specific to each particular application
- Certain applications, like HTTP, NFS, FTP, and Telnet have been standardized
- Standards do not provide a fixed model for applications, but models do exist
 - Client-server versus peer-to-peer
 - Remote procedure call (RPC) versus message passing

© 1999, Scott F. Midkiff
2.1: Network Requirements

Network Requirements

Depend on perspective ...

- **Network users**
 - What services does user need?
 - Need low latency (delay) & loss rate?

- **Network designers**
 - How can we use net resources efficiently?
 - Want high utilization & fair allocation

- **Network service providers**
 - Is system easy-to-admin?
 - When something breaks, can fault be easily isolated?

Considerations that drive network design ...

Connectivity (1)

- **Network building blocks**
 - *Nodes* -- Workstations, PCs
 - *Direct links* -- twisted pair, coaxial cable, optical fiber, radio frequency link, ...
 - Point-to-point
 - Multiple access (multiaccess)

 - Point-to-Point
 - Multiple Access

Connectivity (2)

- **Indirect connectivity**
 - Switched or routed networks allow indirectly connected nodes to communicate
 - Switches, routers, hubs, etc. are specialized nodes in the network
 - Switching network is the "cloud"

 - Switched Network

Connectivity (3)

- **An internetwork or internet** is a network of networks
 - Need internetworking devices

 - Internetwork

Message versus Packet Switching (1)

- **Networks classified by how they segment data for transmission & switching**
 - *Message-switched* versus *packet-switched*
 - Most networks use packet (or cell) switching

- **Messages**
 - Have some meaning to application layer (e.g., a file)
 - Encoded as bit string
 - Arbitrarily long!
Message versus Packet Switching (2)

- **Packets**
 - Transmitter decomposes messages into packets
 - Receiver reconstructs message
 - Lower network layer may further decompose packets (e.g., into Ethernet frames, ATM cells)

<table>
<thead>
<tr>
<th>Message</th>
<th>Packets with headers</th>
</tr>
</thead>
</table>

Sessions

- Messages usually occur as part of longer transaction called a **session**

- Ways you characterize a session...
 - Message or packet arrival process (rate, variability)
 - Session holding time
 - Message or packet length distribution
 - Acceptable delay
 - Required reliability & security
 - Acceptable ordering of messages or packets

Circuit vs. Store-and-Forward Switching

- Two ways to switch messages/packets in a session:
 - **Circuit switching**
 - **Store-and-forward**
 - (or, simply, “packet switching”)

Circuit Switching

- Initiate session s with request for fixed transmission rate (bandwidth requirement) of r_s bits/sec

- Create path through network
 - Each path link allocates capacity r_s bits/sec to s via
 - time-division multiplexing (TDM) or
 - frequency division multiplexing (FDM)
 - Request is blocked if insufficient bandwidth

- Bandwidth dedicated to s for life of session

Efficiency of Circuit Switching

- Most data traffic is “bursty,” so links are not well utilized

 ![Bursty Traffic Diagram](chart)

- Circuit switching not widely used in data networks (except, inefficiently, for access)
 - Links are expensive
 - Sessions require significant portion of link capacity (only a few sessions can be supported)
 - Traffic is bursty, so utilization is low

Store-and-Forward Switching (1)

- Unlike Circuit Switching, no bandwidth is allocation during set-up

- Data transmitted at full link capacity (unlike CS)

- Links can be shared by multiple sessions on a demand basis
Store-and-Forward Switching (2)

- **Advantages:**
 - Link fully utilized if there is any data to transmit
 - Delay can be significantly reduced
 - Utilization can be significantly increased

- **Disadvantages:**
 - Greater variance in delay due to queuing delays
 - Flow control needed to prevent buffer overflows

Store-and-Forward Switching (3)

- **How is information switched?**
 - *Message Switching:* messages sent intact without being broken up
 - *Packet Switching:* messages broken into packets for transmission
 - *Cell Switching:* messages (or packets) broken into fixed-size packets called cells

Geographic Extent (1)

- **Networks may be classified by their geographic extent**
 - *DANs, LANs, MANs, and WANs*
 - Useful classification for lower level protocols
 - Should be transparent to upper layer protocols

- **DAN: Desk Area Network**
 - Connects PC and peripherals
 - USB is sort of an example
 - Medium to high data rates
 - Low-cost, high-volume, built-in interfaces

Geographic Extent (2)

- **Local Area Networks (LANs)**
 - Limited extent (10’s of meters to a few kilometers)
 - High data rates (megabits to gigabits per second)
 - Built-in interfaces in workstations, PCs
 - Low cost
 - Low delay
 - Examples: Ethernet, Token Ring, FDDI, ATM

Geographic Extent (3)

- **Metropolitan Area Networks (MANs)**
 - Medium extent (10’s of kilometers)
 - Medium data rates (kilobits to 100’s of megabits per second)
 - Special access equipment, often expensive
 - Example: FDDI, ATM

- **Wide Area Networks (WANs)**
 - Large extent (global)
 - Low speed (kilobits to 100’s of megabits per second)
 - Special access equipment, usually expensive
 - High latency
 - Examples: T1, T3, SMDS, ATM
Economics dictate that network resources must be shared or *multiplexed* among multiple users.

- Shared links
- Shared network nodes (switches, hubs, etc.)

Statistical Multiplexing

- Packets from all traffic streams are merged into single queue & transmitted on-demand
- Scheduling is typically first-come first-served (FCFS), but might use priorities
- \(T_{SM} = \frac{L}{C} \) seconds needed to transmit \(L \)-bit packet
- Might maintain separate queue for each traffic stream & service in "round-robin" manner (skipping empty queue with no loss of transmission capacity)

Frequency Division Multiplexing

- Channel bandwidth \(W \) is subdivided into \(m \) channels and each of \(m \) traffic streams is given one channel
 - Create \(m \) channels, each with bandwidth \(W/m \), or capacity \(C/m \) (ignoring guard bands between channels)
 - \(L \)-bit packet takes \(T_{FDM} = \frac{Lm}{C} \) seconds to transmit

Multiplexing schemes

- **Fixed**
 - *Time-division multiplexing* (TDM) or synchronous TDM (STDM)
 - *Frequency division multiplexing* (FDM)
- **On-demand**
 - *Statistical multiplexing*, including asynchronous TDM

Synchronous Time-Division Multiplexing

- Time on channel is divided into \(m \) slots and each of \(m \) traffic streams is given one slot -- unused slots are wasted
 - Create \(m \) channels, each with capacity \(C/m \)
 - \(L \)-bit packet takes \(T_{STDM} = Lm/C \) seconds to transmit if packets are long compared to the length of a slot
 - \(L \)-bit packet takes \(T_{STDM} = L/C \) seconds to transmit if slots are of packet length, but must wait \((m-1)\) slots between transmissions

FDM, STDM vs. Statistical Multiplexing

- Statistical multiplexing has smaller average delay than either STDM or FDM
 - Channel capacity is wasted with STDM (wasted time slot) and FDM (wasted bandwidth) when idle
 - Transmission time greater for STDM and FDM
- Advantages of STDM or FDM
 - Statistical multiplexing has lower average delay, but higher *variance* of delay
 - STDM and FDM eliminate need to identify traffic stream associated with each packet
Functionality (1)
- Network must support common services or process-to-process channels, for example
 - Request/reply channel for file access, digital libraries, etc.
 - Message stream channel for video and audio applications

Functionality (2)
- What can corrupt this functionality? What can go wrong?
 - Link or node failures
 - Errors at the bit or packet level
 - Arbitrary delays
 - Buffer overflows -- lost packets
 - Out of order delivery
 - Security -- eavesdropping, spoofing, etc.

Functionality (3)
- The key problem is to bridge
 - What the application expects and
 - What the underlying technology can provide
- Carries over to a layered model -- Layer \(N \) needs to provide
 - What Layer \(N+1 \) expects using
 - What Layer \(N-1 \) can provide

Distributed Algorithms (1)
- Peers cooperate to perform network functions
- Distributed algorithm is decomposed into one or more local algorithms
- Each local algorithm proceeds based on data received from other layers or peers, and order in which data is received

Distributed Algorithms (2)
- These algorithms are complex because underlying services may be unreliable
- Data may ...
 - Never arrive (due to transmission error, overflow, etc.)
 - Arrive late (due to arbitrary network delay)
 - Arrive out of order (due to differing network paths)
- It may be impossible to ensure correct operation 100% of the time
 - Maximize probability of success
 - Detect errors

Maroon and Orange Armies (1)
- Maroon Armies #1 and #2 must attack simultaneously to defeat the Orange Army
- Maroon Army #1 wants to send a messenger (\(\smiley \)) to Maroon Army #2 to set a time for the attack

Maroon and Orange Armies (2)
- Orange Army
- Maroon Army #1
- Maroon Army #2
The messenger must go through enemy territory (an unreliable communication channel).

Problems:
- May be delayed — until after the attack time
- May be captured — so that message is never delivered

Possible solution: require Maroon Army #2 to send another messenger to acknowledge that the first messenger arrived with the message.
- Acknowledgment messenger may be delayed or captured.
- Maroon Army #2 would think that the attack is on, but Maroon Army #1 cannot know if it is on or not.

There is no possible solution to the problem with probability 1 of success.

The attack can be synchronized with high probability.
- For example, send many messengers to increase the likelihood of one reaching Maroon Army #2.

Latency is delay, i.e., the time it takes for a message to get from one point to another.

Round-trip time (RTT) is the time it takes to get to one point and receive a return back.

End-to-end versus link delay.

Components:
- Processing overhead — e.g., software overhead.
- Transmission time — depends on bandwidth and length of message.
- Propagation delay — time for a bit to travel from one end of a link to another.
- Queueing delay — time waiting for a shared link.

Protocols and services define functionality, but not performance.
- Bandwidth, throughput, data rate, capacity, ...
- Latency, delay, ...
- Variability in latency and data rate important for some applications.
- Loss is sometimes a performance measure.

Performance is determined by:
- Underlying technologies
- Protocol design
- Protocol implementation
- Use by the application or upper layer.

Bandwidth is commonly used to indicate the amount of data that can be transferred in some unit of time.

Example: 10 megabits per second
- \(10^7\) bits per second
- \(10^{-7}\) seconds per bit (100 ns) — the “bit width”

\[
\begin{array}{c}
1 \\
0 \\
1 \\
\end{array}
\]

Link versus end-to-end bandwidth may vary.

Latency is delay, i.e., the time it takes for a message to get from one point to another.

Round-trip time (RTT) is the time it takes to get to one point and receive a return back.

End-to-end versus link delay.

Components:
- Processing overhead — e.g., software overhead.
- Transmission time — depends on bandwidth and length of message.
- Propagation delay — time for a bit to travel from one end of a link to another.
- Queueing delay — time waiting for a shared link.
Latency (2)

- **Example**
 - Processing overhead -- assume 1 µs
 - Transmission time
 - Assume $L = 1,000$ bit message
 - Assume $C = 10$ Mbps link
 - Transmission time: $T = \frac{L}{C} = 100$ µs
 - Propagation delay
 - Speed of light is $c = 2 \times 10^8$ m/s in optical fiber
 - Assume $D = 1$ km (1000 m)
 - Propagation delay $= \frac{D}{c} = 5$ µs
 - Queueing delay -- assume 0
 - Latency is $1 + 100 + 5 = 106$ µs (transmission time dominates in this example)

Latency (3)

- **Dominating factors**
 - Processing overhead can dominate for high data rate links over short distances with short messages
 - Transmission time can dominate for slower links or longer messages
 - Propagation delay is important with long links
 - Queueing delay can dominate in a congested network

Delay × Bandwidth Product

- The delay×bandwidth product is an important factor in protocol design
 - Determines the “size of the pipe”
 - Made large by
 - High delay, e.g. long propagation time
 - High bandwidth, e.g. a fast link
 - Large product means that a large amount of data must be sent to “fill the pipe” before the receiver can respond

You should now be able to ... (1)

- Define protocol, service access point, protocol data unit, service data unit
- Describe the structure and role of a layers in a network architecture
- Cite advantages and disadvantages of a layered model for a network architecture
- List the seven layers in OSI reference model and describe the basic functions of each layer
- Describe the three different perspectives on network design

You should now be able to ... (2)

- Define the basic components of a network including links, nodes, and switches
- Describe the construction of an internet (with a lower case i)
- Distinguish between message, packet, and cell switching
- Distinguish between store-and-forward and circuit switching and cite advantages and disadvantages of each
- Define DAN, LAN, MAN, and WAN and describe their general characteristics

You should now be able to ... (3)

- Describe how STDM, FDM, and statistical multiplexing enable resource sharing and cite advantages and disadvantages of STDM and FDM versus statistical multiplexing
- Define bandwidth and latency
- Calculate bandwidth given the time needed to transmit one bit
- Define the components of latency and describe factors that can increase latency
- Calculate latency given information about the components