Tractable Problems

We would like some convention for distinguishing tractable from intractable problems.
A problem is said to be tractable if an algorithm exists to solve it with polynomial time complexity: $O(p(n))$.

- It is said to be intractable if the best known algorithm requires exponential time.

Examples:
- Sorting: $O(n^2)$
- Convex Hull: $O(n^2)$
- Single source shortest path: $O(n^2)$
- All pairs shortest path: $O(n^3)$
- Matrix multiplication: $O(n^3)$
Tractable Problems (cont)

The technique we will use to classify one group of algorithms is based on two concepts:

1. A special kind of reduction.
2. Nondeterminism.
Decision Problems

(I, S) such that S(X) is always either “yes” or “no.”
- Usually formulated as a question.

Example:
- Instance: A weighted graph $G = (V, E)$, two vertices s and t, and an integer K.

- Question: Is there a path from s to t of length $\leq K$? In this example, the answer is “yes.”
Decision Problems (cont)

Can also be formulated as a language recognition problem:
- Let L be the subset of I consisting of instances whose answer is “yes.” Can we recognize L?

The class of tractable problems \mathcal{P} is the class of languages or decision problems recognizable in polynomial time.
Polynomial Reducibility

Reduction of one language to another language.

Let $L_1 \subset I_1$ and $L_2 \subset I_2$ be languages. L_1 is polynomially reducible to L_2 if there exists a transformation $f : I_1 \to I_2$, computable in polynomial time, such that $f(x) \in L_2$ if and only if $x \in L_1$. We write: $L_1 \leq_p L_2$ or $L_1 \leq L_2$.
Examples

- CLIQUE \(\leq_p \) INDEPENDENT SET.
- An instance \(I \) of CLIQUE is a graph \(G = (V, E) \) and an integer \(K \).
- The instance \(I' = f(I) \) of INDEPENDENT SET is the graph \(G' = (V, E') \) and the integer \(K \), were an edge \((u, v) \in E' \) iff \((u, v) \notin E \).
- \(f \) is computable in polynomial time.
Transformation Example

- G has a clique of size $\geq K$ iff G' has an independent set of size $\geq K$.
- Therefore, CLIQUE \leq_p INDEPENDENT SET.
- **IMPORTANT WARNING:** The reduction does not solve either INDEPENDENT SET or CLIQUE, it merely transforms one into the other.
Nondeterminism

Nondeterminism allows an algorithm to make an arbitrary choice among a finite number of possibilities.

Implemented by the “nd-choice” primitive:

\[\text{nd-choice}(ch_1, ch_2, \ldots, ch_j) \]

returns one of the choices \(ch_1, ch_2, \ldots \) arbitrarily.

Nondeterministic algorithms can be thought of as “correctly guessing” (choosing nondeterministically) a solution.
Nondeterminism

Nondeterminism allows an algorithm to make an arbitrary choice among a finite number of possibilities.

Implemented by the “nd-choice” primitive:

\[
\text{nd-choice}(ch_1, ch_2, \ldots, ch_j)
\]
returns one of the choices \(ch_1, ch_2, \ldots\) arbitrarily.

Nondeterministic algorithms can be thought of as “correctly guessing” (choosing nondeterministically) a solution.

Alternatively, nondeterministic algorithms can be thought of as running on super-parallel machines that make all choices simultaneously and then reports the “right” solution.
Nondeterministic CLIQUE Algorithm

procedure nd-CLIQUE(Graph G, int K) {
 VertexSet S = EMPTY; int size = 0;
 for (v in G.V)
 if (nd-choice(YES, NO) == YES) then {
 S = union(S, v);
 size = size + 1;
 }
 if (size < K) then
 REJECT; // S is too small
 for (u in S)
 for (v in S)
 if ((u <> v) && ((u, v) not in E))
 REJECT; // S is missing an edge
 ACCEPT;
}
Nondeterministic Acceptance

- \((G, K)\) is in the “language” CLIQUE iff there exists a sequence of nd-choice guesses that causes nd-CLIQUE to accept.
- Definition of acceptance by a nondeterministic algorithm:
 - An instance is accepted iff there exists a sequence of nondeterministic choices that causes the algorithm to accept.
Nondeterministic Acceptance

- \((G, K)\) is in the “language” CLIQUE iff there exists a sequence of nd-choice guesses that causes nd-CLIQUE to accept.
- Definition of acceptance by a nondeterministic algorithm:
 - An instance is accepted iff there exists a sequence of nondeterministic choices that causes the algorithm to accept.
- An unrealistic model of computation.
 - There are an exponential number of possible choices, but only one must accept for the instance to be accepted.
Nondeterministic Acceptance

- (G, K) is in the “language” CLIQUE iff there exists a sequence of nd-choice guesses that causes nd-CLIQUE to accept.
- Definition of acceptance by a nondeterministic algorithm:
 - An instance is accepted iff there exists a sequence of nondeterministic choices that causes the algorithm to accept.
- An unrealistic model of computation.
 - There are an exponential number of possible choices, but only one must accept for the instance to be accepted.
- Nondeterminism is a useful concept
 - It provides insight into the nature of certain hard problems.
Class \mathcal{NP}

- The class of languages accepted by a nondeterministic algorithm in polynomial time is called \mathcal{NP}.
- There are an exponential number of different executions of nd-CLIQUE on a single instance, but any one execution requires only polynomial time in the size of that instance.
- Time complexity of nondeterministic algorithm is greatest amount of time required by any one of its executions.
Class \mathcal{NP} (cont)

Alternative Interpretation:

- \mathcal{NP} is the class of algorithms that — never mind how we got the answer — can check if the answer is correct in polynomial time.
- If you cannot verify an answer in polynomial time, you cannot hope to find the right answer in polynomial time!
How to Get Famous

Clearly, $\mathcal{P} \subset \mathcal{NP}$.

Extra Credit Problem:
- Prove or disprove: $\mathcal{P} = \mathcal{NP}$.

This is important because there are many natural decision problems in \mathcal{NP} for which no \mathcal{P} (tractable) algorithm is known.
NP-completeness

A theory based on identifying problems that are as hard as any problems in NP.

The next best thing to knowing whether $\mathsf{P} = \mathsf{NP}$ or not.

A decision problem A is NP-hard if every problem in NP is polynomially reducible to A, that is, for all $B \in \mathsf{NP}$,

$$B \in \mathsf{NP}, \quad B \leq_{p} A.$$

A decision problem A is NP-complete if $A \in \mathsf{NP}$ and A is NP-hard.
Satisfiability

Let E be a Boolean expression over variables x_1, x_2, \cdots, x_n in conjunctive normal form (CNF), that is, an AND of ORs.

$$E = (x_5 + x_7 + \overline{x_8} + x_{10}) \cdot (\overline{x_2} + x_3) \cdot (x_1 + \overline{x_3} + x_6).$$

A variable or its negation is called a literal. Each sum is called a clause.

SATISFIABILITY (SAT):

- Instance: A Boolean expression E over variables x_1, x_2, \cdots, x_n in CNF.
- Question: Is E satisfiable?
Satisfiability

Let E be a Boolean expression over variables x_1, x_2, \cdots, x_n in conjunctive normal form (CNF), that is, an AND of ORs.

$$E = (x_5 + x_7 + \overline{x_8} + x_{10}) \cdot (x_2 + x_3) \cdot (x_1 + \overline{x_3} + x_6).$$

A variable or its negation is called a **literal**.
Each sum is called a **clause**.

SATISFIABILITY (SAT):

- Instance: A Boolean expression E over variables x_1, x_2, \cdots, x_n in CNF.
- Question: Is E satisfiable?

Cook’s Theorem: SAT is NP-complete.
Proof Sketch

\textbf{SAT} $\in \mathcal{NP}$:

- A non-deterministic algorithm \textit{guesses} a truth assignment for x_1, x_2, \cdots, x_n and \textit{checks} whether E is true in polynomial time.
- It accepts iff there is a satisfying assignment for E.
Proof Sketch

SAT \in \mathcal{NP}:
- A non-deterministic algorithm **guesses** a truth assignment for \(x_1, x_2, \ldots, x_n\) and **checks** whether \(E\) is true in polynomial time.
- It accepts iff there is a satisfying assignment for \(E\).

SAT is \mathcal{NP}-hard:
- Start with an arbitrary problem \(B \in \mathcal{NP}\).
- We know there is a polynomial-time, nondeterministic algorithm to accept \(B\).
- Cook showed how to transform an instance \(X\) of \(B\) into a Boolean expression \(E\) that is satisfiable if the algorithm for \(B\) accepts \(X\).
Implications

(1) Since SAT is \mathcal{NP}-complete, we have not defined an empty concept.
Implications

(1) Since SAT is \mathcal{NP}-complete, we have not defined an empty concept.

(2) If SAT $\in \mathcal{P}$, then $\mathcal{P} = \mathcal{NP}$.
Implications

(1) Since SAT is \mathcal{NP}-complete, we have not defined an empty concept.

(2) If $\text{SAT} \in \mathcal{P}$, then $\mathcal{P} = \mathcal{NP}$.

(3) If $\mathcal{P} = \mathcal{NP}$, then $\text{SAT} \in \mathcal{P}$.
Implications

(1) Since SAT is \mathcal{NP}-complete, we have not defined an empty concept.

(2) If SAT $\in \mathcal{P}$, then $\mathcal{P} = \mathcal{NP}$.

(3) If $\mathcal{P} = \mathcal{NP}$, then SAT $\in \mathcal{P}$.

(4) If $A \in \mathcal{NP}$ and B is \mathcal{NP}-complete, then $B \leq_p A$ implies A is \mathcal{NP}-complete.
Implications

(1) Since SAT is \mathcal{NP}-complete, we have not defined an empty concept.

(2) If SAT $\in \mathcal{P}$, then $\mathcal{P} = \mathcal{NP}$.

(3) If $\mathcal{P} = \mathcal{NP}$, then SAT $\in \mathcal{P}$.

(4) If $A \in \mathcal{NP}$ and B is \mathcal{NP}-complete, then $B \leq_p A$ implies A is \mathcal{NP}-complete.

Proof:

- Let $C \in \mathcal{NP}$.
- Then $C \leq_p B$ since B is \mathcal{NP}-complete.
- Since $B \leq_p A$ and \leq_p is transitive, $C \leq_p A$.
- Therefore, A is \mathcal{NP}-hard and, finally, \mathcal{NP}-complete.
Implications (cont)

(5) This gives a simple two-part strategy for showing a decision problem A is \mathcal{NP}-complete.
 (a) Show $A \in \mathcal{NP}$.
 (b) Pick an \mathcal{NP}-complete problem B and show $B \leq_p A$.
To show that decision problem B is \mathcal{NP}-complete:

1. $B \in \mathcal{NP}$
 - Give a polynomial time, non-deterministic algorithm that accepts B.
 1. Given an instance X of B, guess evidence Y.
 2. Check whether Y is evidence that $X \in B$. If so, accept X.
NP-completeness Proof Template

To show that decision problem B is NP-complete:

1. **$B \in NP$**
 - Give a polynomial time, non-deterministic algorithm that accepts B.
 - Given an instance X of B, **guess** evidence Y.
 - **Check** whether Y is evidence that $X \in B$. If so, accept X.

2. **B is NP-hard.**
 - Choose a known NP-complete problem, A.
 - Describe a polynomial-time transformation T of an arbitrary instance of A to a [not necessarily arbitrary] instance of B.
 - Show that $X \in A$ if and only if $T(X) \in B$.
3-SATISFIABILITY (3SAT)

Instance: A Boolean expression E in CNF such that each clause contains exactly 3 literals.

Question: Is there a satisfying assignment for E?

A special case of SAT.

One might hope that 3SAT is easier than SAT.
3SAT is \mathcal{NP}-complete

(1) $3\text{SAT} \in \mathcal{NP}$.

procedure nd-3SAT(E) {
 for (i = 1 to n)
 $x[i] = \text{nd-choice}(\text{TRUE, FALSE})$;
 Evaluate E for the guessed truth assignment.
 if (E evaluates to TRUE)
 ACCEPT;
 else
 REJECT;
}

nd-3SAT is a polynomial-time nondeterministic algorithm that accepts 3SAT.
Proving 3SAT \mathbb{NP}-hard

1. Choose SAT to be the known \mathbb{NP}-complete problem.
 - We need to show that SAT \leq_p 3SAT.
2. Let $E = C_1 \cdot C_2 \cdots C_k$ be any instance of SAT.

Strategy: Replace any clause C_i that does not have exactly
3 literals with two or more clauses having exactly 3 literals.

Let $C_i = y_1 + y_2 + \cdots + y_j$ where y_1, \cdots, y_j are literals.

(a) $j = 1$
 - Replace (y_1) with

\[
(y_1 + v + w) \cdot (y_1 + \overline{v} + w) \cdot (y_1 + v + \overline{w}) \cdot (y_1 + \overline{v} + \overline{w})
\]

where v and w are new variables.
Proving 3SAT \mathcal{NP}-hard (cont)

(b) $j = 2$
- Replace $(y_1 + y_2)$ with $(y_1 + y_2 + z) \cdot (y_1 + y_2 + \overline{z})$ where z is a new variable.

(c) $j > 3$
- Replace $(y_1 + y_2 + \cdots + y_j)$ with

\[(y_1 + y_2 + z_1) \cdot (y_3 + \overline{z_1} + z_2) \cdot (y_4 + \overline{z_2} + z_3) \cdots (y_{j-2} + \overline{z_{j-4}} + z_{j-3}) \cdot (y_{j-1} + y_j + \overline{z_{j-3}})\]

where $z_1, z_2, \cdots, z_{j-3}$ are new variables.
- After replacements made for each C_i, a Boolean expression E' results that is an instance of 3SAT.
- The replacement clearly can be done by a polynomial-time deterministic algorithm.
(3) Show \(E \) is satisfiable iff \(E' \) is satisfiable.

- Assume \(E \) has a satisfying truth assignment.
- Then that extends to a satisfying truth assignment for cases (a) and (b).
- In case (c), assume \(y_m \) is assigned “true”.
- Then assign \(z_t, t \leq m - 2 \), true and \(z_k, t \geq m - 1 \), false.
- Then all the clauses in case (c) are satisfied.
Assume E' has a satisfying assignment.
By restriction, we have truth assignment for E.

(a) y_1 is necessarily true.
(b) $y_1 + y_2$ is necessarily true.
(c) Proof by contradiction:
 - If y_1, y_2, \cdots, y_j are all false, then $z_1, z_2, \cdots, z_{j-3}$ are all true.
 - But then $(y_{j-1} + y_{j-2} + \overline{z_{j-3}})$ is false, a contradiction.

We conclude SAT \leq 3SAT and 3SAT is \mathcal{NP}-complete.
Reductions go down the tree.

Proofs that each problem $\in \mathcal{NP}$ are straightforward.
Perspective

The reduction tree gives us a collection of 12 diverse \(\mathcal{NP} \)-complete problems. The complexity of all these problems depends on the complexity of any one:

- If any \(\mathcal{NP} \)-complete problem is tractable, then they all are.

This collection is a good place to start when attempting to show a decision problem is \(\mathcal{NP} \)-complete.

Observation: If we find a problem is \(\mathcal{NP} \)-complete, then we should do something other than try to find a \(\mathcal{P} \)-time algorithm.
\textbf{SAT} \leq_p \text{ CLIQUE}

(1) Easy to show CLIQUE in \mathcal{NP}.
(2) An instance of SAT is a Boolean expression

$$B = C_1 \cdot C_2 \cdots C_m,$$

where

$$C_i = y[i, 1] + y[i, 2] + \cdots + y[i, k_i].$$

Transform this to an instance of CLIQUE $G = (V, E)$ and K.

$$V = \{v[i, j]|1 \leq i \leq m, 1 \leq j \leq k_i\}$$

Two vertices $v[i_1, j_1]$ and $v[i_2, j_2]$ are adjacent in G if $i_1 \neq i_2$
AND EITHER $y[i_1, j_1]$ and $y[i_2, j_2]$ are the same literal
OR $y[i_1, j_1]$ and $y[i_2, j_2]$ have different underlying variables.

$K = m.$
\[\text{SAT} \leq_P \text{CLIQUE (cont)} \]

Example: \[B = (x + y + \bar{z}) \cdot (\bar{x} + \bar{y} + z) \cdot (y + \bar{z}) \cdot (x + y + \bar{z}) \cdot (\bar{x} + \bar{y} + z) \cdot (y + \bar{z}). \]

\[K = 3. \]

(3) \(B \) is satisfiable iff \(G \) has clique of size \(\geq K \).

- \(B \) is satisfiable implies there is a truth assignment such that \(y[i, j_i] \) is true for each \(i \).
- But then \(v[i, j_i] \) must be in a clique of size \(K = m \).
- If \(G \) has a clique of size \(\geq K \), then the clique must have size exactly \(K \) and there is one vertex \(v[i, j_i] \) in the clique for each \(i \).
- There is a truth assignment making each \(y[i, j_i] \) true.

That truth assignment satisfies \(B \).

We conclude that CLIQUE is \(\mathcal{NP} \)-hard, therefore \(\mathcal{NP} \)-complete.
Co-NP

• Note the asymmetry in the definition of NP.
 ▶ The non-determinism can identify a clique, and you can verify it.
 ▶ But what if the correct answer is “NO”? How do you verify that?

• Co-NP: The complements of problems in NP.
 ▶ Is a boolean expression always false?
 ▶ Is there no clique of size k?

• It seems unlikely that $NP = \text{co-}NP$.
Is \mathcal{NP}-complete $= \mathcal{NP}$?

- It has been proved that if $\mathcal{P} \neq \mathcal{NP}$, then \mathcal{NP}-complete $\neq \mathcal{NP}$.
- The following problems are not known to be in \mathcal{P} or \mathcal{NP}, but seem to be of a type that makes them unlikely to be in \mathcal{NP}.
 - GRAPH ISOMORPHISM: Are two graphs isomorphic?
 - COMPOSITE NUMBERS: For positive integer K, are there integers $m, n > 1$ such that $K = mn$?
 - LINEAR PROGRAMMING
PARTITION \leq_p KNAPSACK

PARTITION is a special case of KNAPSACK in which

$$K = \frac{1}{2} \sum_{a \in A} s(a)$$

assuming $\sum s(a)$ is even.

Assuming PARTITION is \mathcal{NP}-complete, KNAPSACK is \mathcal{NP}-complete.
“Practical” Exponential Problems

What about our $O(KN)$ dynamic prog algorithm?
“Practical” Exponential Problems

- What about our $O(KN)$ dynamic prog algorithm?
- Input size for KNAPSACK is $O(N \log K)$
 - Thus $O(KN)$ is exponential in $N \log K$.
- The dynamic programming algorithm counts through numbers $1, \cdots, K$. Takes exponential time when measured by number of bits to represent K.
“Practical” Exponential Problems

- What about our $O(KN)$ dynamic prog algorithm?
- Input size for KNAPSACK is $O(N \log K)$
 - Thus $O(KN)$ is exponential in $N \log K$.
- The dynamic programming algorithm counts through numbers $1, \ldots, K$. Takes exponential time when measured by number of bits to represent K.
- If K is “small” ($K = O(p(N))$), then algorithm has complexity polynomial in N and is truly polynomial in input size.
- An algorithm that is polynomial-time if the numbers IN the input are “small” (as opposed to number OF inputs) is called a **pseudo-polynomial** time algorithm.
“Practical” Problems (cont)

Lesson: While KNAPSACK is \mathcal{NP}-complete, it is often not that hard.

Many \mathcal{NP}-complete problems have no pseudo-polynomial time algorithm unless $\mathcal{P} = \mathcal{NP}$.
Coping with NP-completeness

(1) Find subproblems of the original problem that have polynomial-time algorithms.

(2) Approximation algorithms.

(3) Randomized Algorithms.

(4) Backtracking; Branch and Bound.

(5) Heuristics.
 - Greedy.
 - Simulated Annealing.
 - Genetic Algorithms.
Subproblems

Restrict attention to special classes of inputs. Examples:

- VERTEX COVER, INDEPENDENT SET, and CLIQUE, when restricted to bipartite graphs, all have polynomial-time algorithms (for VERTEX COVER, by reduction to NETWORK FLOW).

- 2-SATISFIABILITY, 2-DIMENSIONAL MATCHING and EXACT COVER BY 2-SETS all have polynomial time algorithms.

- PARTITION and KNAPSACK have polynomial time algorithms if the numbers in an instance are all $O(p(n))$.

- However, HAMILTONIAN CIRCUIT and 3-COLORABILITY remain NP-complete even for a planar graph.
Subproblems

Restrict attention to special classes of inputs.
Examples:

- VERTEX COVER, INDEPENDENT SET, and CLIQUE, when restricted to bipartite graphs, all have polynomial-time algorithms (for VERTEX COVER, by reduction to NETWORK FLOW).

- 2-SATISFIABILITY, 2-DIMENSIONAL MATCHING and EXACT COVER BY 2-SETS all have polynomial time algorithms.
Subproblems

Restrict attention to special classes of inputs. Examples:

- VERTEX COVER, INDEPENDENT SET, and CLIQUE, when restricted to bipartite graphs, all have polynomial-time algorithms (for VERTEX COVER, by reduction to NETWORK FLOW).
- 2-SATISFIABILITY, 2-DIMENSIONAL MATCHING and EXACT COVER BY 2-SETS all have polynomial time algorithms.
- PARTITION and KNAPSACK have polynomial time algorithms if the numbers in an instance are all \(O(p(n)) \).
Subproblems

Restrict attention to special classes of inputs.

Examples:

- VERTEX COVER, INDEPENDENT SET, and CLIQUE, when restricted to bipartite graphs, all have polynomial-time algorithms (for VERTEX COVER, by reduction to NETWORK FLOW).
- 2-SATISFIABILITY, 2-DIMENSIONAL MATCHING and EXACT COVER BY 2-SETS all have polynomial time algorithms.
- PARTITION and KNAPSACK have polynomial time algorithms if the numbers in an instance are all $O(p(n))$.
- However, HAMILTONIAN CIRCUIT and 3-COLORABILITY remain \mathcal{NP}-complete even for a planar graph.
Backtracking

We may view a nondeterministic algorithm executing on a particular instance as a tree:

1. Each edge represents a particular nondeterministic choice.
2. The checking occurs at the leaves.

Example:

Each leaf represents a different set S. Checking that S is a clique of size $\geq K$ can be done in polynomial time.
Backtracking (cont)

Backtracking can be viewed as an in-order traversal of this tree with two criteria for stopping.

1. A leaf that accepts is found.
2. A partial solution that could not possibly lead to acceptance is reached.

Example:

There cannot possibly be a set S of cardinality ≥ 2 under this node, so backtrack.

Since $(1, 2) \notin E$, no S under this node can be a clique, so backtrack.
Branch and Bound

- For optimization problems.
 More sophisticated kind of backtracking.
- Use the best solution found so far as a **bound** that controls backtracking.
- Example Problem: Given a graph G, find a minimum vertex cover of G.
- Computation tree for nondeterministic algorithm is similar to CLIQUE.
 - Every leaf represents a different subset S of the vertices.
 - Whenever a leaf is reached and it contains a vertex cover of size B, B is an upper bound on the size of the minimum vertex cover.
 - Use B to prune any future tree nodes having size $\geq B$.
 - Whenever a smaller vertex cover is found, update B.
Branch and Bound (cont)

- Improvement:
 - Use a fast, greedy algorithm to get a minimal (not minimum) vertex cover.
 - Use this as the initial bound B.

- While Branch and Bound is better than a brute-force exhaustive search, it is usually exponential time, hence impractical for all but the smallest instances.
 - ... if we insist on an optimal solution.

- Branch and Bound often practical as an approximation algorithm where the search terminates when a “good enough” solution is obtained.
Approximation Algorithms

Seek algorithms for optimization problems with a guaranteed bound on the quality of the solution.

VERTEX COVER: Given a graph $G = (V, E)$, find a vertex cover of minimum size.

Let M be a maximal (not necessarily maximum) matching in G and let V' be the set of matched vertices. If OPT is the size of a minimum vertex cover, then

$$|V'| \leq 2OPT$$

because at least one endpoint of every matched edge must be in any vertex cover.
Bin Packing

We have numbers x_1, x_2, \cdots, x_n between 0 and 1 as well as an unlimited supply of bins of size 1.

Problem: Put the numbers into as few bins as possible so that the sum of the numbers in any one bin does not exceed 1.

Example: Numbers $3/4, 1/3, 1/2, 1/8, 2/3, 1/2, 1/4$.

Optimal solution: $[3/4, 1/8], [1/2, 1/3], [1/2, 1/4], [2/3]$.
First Fit Algorithm

Place x_1 into the first bin.

For each $i, 2 \leq i \leq n$, place x_i in the first bin that will contain it.

No more than 1 bin can be left less than half full. The number of bins used is no more than twice the sum of the numbers.

The sum of the numbers is a lower bound on the number of bins in the optimal solution.

Therefore, first fit is no more than twice the optimal number of bins.
First Fit Does Poorly

Let ϵ be very small, e.g., $\epsilon = 0.00001$. Numbers (in this order):

- 6 of $(1/7 + \epsilon)$.
- 6 of $(1/3 + \epsilon)$.
- 6 of $(1/2 + \epsilon)$.

First fit returns:

- 1 bin of $[6$ of $1/7 + \epsilon]$
- 3 bins of $[2$ of $1/3 + \epsilon]$
- 6 bins of $[1/2 + \epsilon]$

Optimal solution is 6 bins of $[1/7 + \epsilon, 1/3 + \epsilon, 1/2 + \epsilon]$.

First fit is $5/3$ larger than optimal.
Decreasing First Fit

It can be proved that the worst-case performance of first-fit is $17/10$ times optimal.

Use the following heuristic:

- Sort the numbers in decreasing order.
- Apply first fit.
- This is called decreasing first fit.

The worst case performance of decreasing first fit is close to $11/9$ times optimal.
Summary

- The theory of NP-completeness gives us a technique for separating tractable from (probably) intractable problems.
- When faced with a new problem requiring algorithmic solution, our thought process might resemble this scheme:

 \[
 \text{Is it } NP\text{-complete?} \iff \text{Is it in } P?
 \]

- Alternately think about each question. Lack of progress on either question might give insights into the answer to the other question.
- Once an affirmative answer is obtained to one of these questions, one of two strategies is followed.
Strategies

(1) The problem is in \(\mathcal{P} \).
- This means there are polynomial-time algorithms for the problem, and presumably we know at least one.
- So, apply the techniques learned in this course to analyze the algorithms and improve them to find the lowest time complexity we can.

(2) The problem is \(\mathcal{NP} \)-complete.
- Apply the strategies for coping with \(\mathcal{NP} \)-completeness.
- Especially, find subproblems that are in \(\mathcal{P} \), or find approximation algorithms.
Algebraic and Numeric Algorithms

- Measuring cost of arithmetic and numerical operations:
 - Measure size of input in terms of bits.
- Algebraic operations:
 - Measure size of input in terms of numbers.
- In both cases, measure complexity in terms of basic arithmetic operations: $+, -, \times, \div$.
 - Sometimes, measure complexity in terms of bit operations to account for large numbers.
- Size of numbers may be related to problem size:
 - Pointers, counters to objects.
 - Resolution in geometry/graphics (to distinguish between object positions).
Exponentiation

Given positive integers n and k, compute n^k.

Algorithm:

$p = 1;$
for (i=1 to k)
 $p = p \times n$;

Analysis:

- Input size: $\Theta(\log n + \log k)$.
- Time complexity: $\Theta(k)$ multiplications.
- This is **exponential** in input size.
Faster Exponentiation

Write \(k \) as:

\[
 k = b_t 2^t + b_{t-1} 2^{t-1} + \cdots + b_1 2 + b_0, \quad b \in \{0, 1\}.
\]

Rewrite as:

\[
 k = ((\cdots (b_t 2 + b_{t-1}) 2 + \cdots + b_2) 2 + b_1) 2 + b_0.
\]

New algorithm:

\[
 p = n; \\
 \text{for (i = t-1 downto 0)} \\
 \quad p = p \times p \times \exp(n, b[i])
\]

Analysis:

- Time complexity: \(\Theta(t) = \Theta(\log k) \) multiplications.
- This is \textbf{exponentially} better than before.
Greatest Common Divisor

- The Greatest Common Divisor (GCD) of two integers is the greatest integer that divides both evenly.
- Observation: If \(k \) divides \(n \) and \(m \), then \(k \) divides \(n - m \).
- So,

\[
f(n, m) = f(n - m, n) = f(m, n - m) = f(m, n).
\]

- Observation: There exists \(k \) and \(l \) such that

\[
n = km + l \quad \text{where} \quad m > l \geq 0.
\]

\[
n = \lfloor n/m \rfloor m + n \mod m.
\]

- So,

\[
f(n, m) = f(m, l) = f(m, n \mod m).
\]
GCD Algorithm

\[f(n, m) = \begin{cases}
 n & m = 0 \\
 f(m, n \mod m) & m > 0
\end{cases} \]

```c
int LCF(int n, int m) {
    if (m == 0) return n;
    return LCF(m, n % m);
}
```
Analysis of GCD

• How big is $n \mod m$ relative to n?

$$n \geq m \Rightarrow \frac{n}{m} \geq 1$$

$$\Rightarrow 2\lfloor\frac{n}{m}\rfloor > \frac{n}{m}$$

$$\Rightarrow m\lfloor\frac{n}{m}\rfloor > \frac{n}{2}$$

$$\Rightarrow n - \frac{n}{2} > n - m\lfloor\frac{n}{m}\rfloor = n \mod m$$

$$\Rightarrow \frac{n}{2} > n \mod m$$

• The first argument must be halved in no more than 2 iterations.

• Total cost: