Tractable Problems

We would like some convention for distinguishing tractable from intractable problems.

A problem is said to be **tractable** if an algorithm exists to solve it with polynomial time complexity: $O(p(n))$.

- It is said to be **intractable** if the best known algorithm requires exponential time.

Examples:

- Sorting: $O(n^2)$
- Convex Hull: $O(n^2)$
- Single source shortest path: $O(n^2)$
- All pairs shortest path: $O(n^3)$
- Matrix multiplication: $O(n^3)$
Tractable Problems (cont)

The technique we will use to classify one group of algorithms is based on two concepts:

1. A special kind of reduction.
2. Nondeterminism.
Decision Problems

(I, S) such that S(X) is always either “yes” or “no.”

- Usually formulated as a question.

Example:

- Instance: A weighted graph $G = (V, E)$, two vertices s and t, and an integer K.

- Question: Is there a path from s to t of length $\leq K$? In this example, the answer is “yes.”
Decision Problems (cont)

Can also be formulated as a language recognition problem:

- Let \(L \) be the subset of \(I \) consisting of instances whose answer is “yes.” Can we recognize \(L \)?

The class of tractable problems \(\mathcal{P} \) is the class of languages or decision problems recognizable in polynomial time.
Polynomial Reducibility

Reduction of one language to another language.

Let $L_1 \subset I_1$ and $L_2 \subset I_2$ be languages. L_1 is \underline{polynomially reducible} to L_2 if there exists a transformation $f : I_1 \rightarrow I_2$, computable in polynomial time, such that $f(x) \in L_2$ if and only if $x \in L_1$.

We write: $L_1 \leq_p L_2$ or $L_1 \leq L_2$.
Examples

- CLIQUE \(\leq_p \) INDEPENDENT SET.
- An instance \(I \) of CLIQUE is a graph \(G = (V, E) \) and an integer \(K \).
- The instance \(I' = f(I) \) of INDEPENDENT SET is the graph \(G' = (V, E') \) and the integer \(K \), were an edge \((u, v) \in E'\) iff \((u, v) \notin E\).
- \(f \) is computable in polynomial time.
Transformation Example

- G has a clique of size $\geq K$ iff G' has an independent set of size $\geq K$.
- Therefore, CLIQUE \leq_p INDEPENDENT SET.
- **IMPORTANT WARNING:** The reduction does not solve either INDEPENDENT SET or CLIQUE, it merely transforms one into the other.
Nondeterminism

Nondeterminism allows an algorithm to make an arbitrary choice among a finite number of possibilities.

Implemented by the “nd-choice” primitive:

\[
\text{nd-choice}(\text{ch}_1, \text{ch}_2, \ldots, \text{ch}_j)
\]

returns one of the choices \(\text{ch}_1, \text{ch}_2, \ldots\) arbitrarily.

Nondeterministic algorithms can be thought of as “correctly guessing” (choosing nondeterministically) a solution.
Nondeterminism

Nondeterminism allows an algorithm to make an arbitrary choice among a finite number of possibilities.

Implemented by the “nd-choice” primitive:

```
nd-choice(ch_1, ch_2, ..., ch_j)
```

returns one of the choices ch_1, ch_2, ... arbitrarily.

Nondeterministic algorithms can be thought of as “correctly guessing” (choosing nondeterministically) a solution.

Alternatively, nondeterministic algorithms can be thought of as running on super-parallel machines that make all choices simultaneously and then reports the “right” solution.
Nondeterministic CLIQUE Algorithm

procedure nd-CLIQUE(Graph G, int K) {
 VertexSet S = EMPTY; int size = 0;
 for (v in G.V)
 if (nd-choice(YES, NO) == YES) then {
 S = union(S, v);
 size = size + 1;
 }
 if (size < K) then
 REJECT; // S is too small
 for (u in S)
 for (v in S)
 if ((u <> v) && ((u, v) not in E))
 REJECT; // S is missing an edge
 ACCEPT;
}
Nondeterministic Acceptance

- \((G, K)\) is in the “language” CLIQUE iff there exists a sequence of nd-choice guesses that causes nd-CLIQUE to accept.
- Definition of acceptance by a nondeterministic algorithm:
 - An instance is accepted iff there exists a sequence of nondeterministic choices that causes the algorithm to accept.
Nondeterministic Acceptance

- \((G, K)\) is in the “language” CLIQUE iff there exists a sequence of nd-choice guesses that causes nd-CLIQUE to accept.
- Definition of acceptance by a nondeterministic algorithm:
 - An instance is accepted iff there exists a sequence of nondeterministic choices that causes the algorithm to accept.
- An unrealistic model of computation.
 - There are an exponential number of possible choices, but only one must accept for the instance to be accepted.
Nondeterministic Acceptance

- \((G, K)\) is in the “language” CLIQUE iff there exists a sequence of nd-choice guesses that causes nd-CLIQUE to accept.

- Definition of acceptance by a nondeterministic algorithm:
 - An instance is accepted iff there exists a sequence of nondeterministic choices that causes the algorithm to accept.

- An unrealistic model of computation.
 - There are an exponential number of possible choices, but only one must accept for the instance to be accepted.

- Nondeterminism is a useful concept
 - It provides insight into the nature of certain hard problems.
Class NP

- The class of languages accepted by a nondeterministic algorithm in polynomial time is called NP.
- There are an exponential number of different executions of nd-CLIQUE on a single instance, but any one execution requires only polynomial time in the size of that instance.
- Time complexity of nondeterministic algorithm is greatest amount of time required by any one of its executions.
Class \mathcal{NP} (cont)

Alternative Interpretation:

- \mathcal{NP} is the class of algorithms that — never mind how we got the answer — can check if the answer is correct in polynomial time.

- If you cannot verify an answer in polynomial time, you cannot hope to find the right answer in polynomial time!
How to Get Famous

Clearly, $\mathcal{P} \subset \mathcal{NP}$.

Extra Credit Problem:
- Prove or disprove: $\mathcal{P} = \mathcal{NP}$.

This is important because there are many natural decision problems in \mathcal{NP} for which no \mathcal{P} (tractable) algorithm is known.
NP-completeness

A theory based on identifying problems that are as hard as any problems in NP.

The next best thing to knowing whether $\mathcal{P} = \mathcal{NP}$ or not.

A decision problem A is **NP-hard** if every problem in NP is polynomially reducible to A, that is, for all

$$B \in \text{NP}, \quad B \leq_p A.$$

A decision problem A is **NP-complete** if $A \in \text{NP}$ and A is NP-hard.
Satisfiability

Let E be a Boolean expression over variables x_1, x_2, \cdots, x_n in conjunctive normal form (CNF), that is, an AND of ORs.

$$E = (x_5 + x_7 + \overline{x_8} + x_{10}) \cdot (x_2 + x_3) \cdot (x_1 + \overline{x_3} + x_6).$$

A variable or its negation is called a literal. Each sum is called a clause.

SATISFIABILITY (SAT):

- Instance: A Boolean expression E over variables x_1, x_2, \cdots, x_n in CNF.
- Question: Is E satisfiable?
Satisfiability

Let E be a Boolean expression over variables x_1, x_2, \cdots, x_n in conjunctive normal form (CNF), that is, an AND of ORs.

$$E = (x_5 + x_7 + \overline{x}_8 + x_{10}) \cdot (x_2 + x_3) \cdot (x_1 + \overline{x}_3 + x_6).$$

A variable or its negation is called a **literal**. Each sum is called a **clause**.

SATISFIABILITY (SAT):

- **Instance**: A Boolean expression E over variables x_1, x_2, \cdots, x_n in CNF.
- **Question**: Is E satisfiable?

Cook’s Theorem: SAT is \mathcal{NP}-complete.
Proof Sketch

\(\text{SAT} \in \mathcal{NP} \):

- A non-deterministic algorithm \textit{guesses} a truth assignment for \(x_1, x_2, \ldots, x_n \) and \textit{checks} whether \(E \) is true in polynomial time.
- It accepts iff there is a satisfying assignment for \(E \).
Proof Sketch

\[\text{SAT} \in \mathcal{NP}: \]

- A non-deterministic algorithm \textbf{guesses} a truth assignment for \(x_1, x_2, \ldots, x_n \) and \textbf{checks} whether \(E \) is true in polynomial time.
- It accepts iff there is a satisfying assignment for \(E \).

\[\text{SAT is } \mathcal{NP}-\text{hard:} \]

- Start with an arbitrary problem \(B \in \mathcal{NP} \).
- We know there is a polynomial-time, nondeterministic algorithm to accept \(B \).
- Cook showed how to transform an instance \(X \) of \(B \) into a Boolean expression \(E \) that is satisfiable if the algorithm for \(B \) accepts \(X \).
Implications

(1) Since SAT is \mathcal{NP}-complete, we have not defined an empty concept.
Implications

(1) Since SAT is \mathcal{NP}-complete, we have not defined an empty concept.

(2) If SAT $\in \mathcal{P}$, then $\mathcal{P} = \mathcal{NP}$.
Implications

(1) Since SAT is \mathcal{NP}-complete, we have not defined an empty concept.

(2) If SAT $\in \mathcal{P}$, then $\mathcal{P} = \mathcal{NP}$.

(3) If $\mathcal{P} = \mathcal{NP}$, then SAT $\in \mathcal{P}$.
Implications

(1) Since SAT is \mathcal{NP}-complete, we have not defined an empty concept.

(2) If SAT $\in \mathcal{P}$, then $\mathcal{P} = \mathcal{NP}$.

(3) If $\mathcal{P} = \mathcal{NP}$, then SAT $\in \mathcal{P}$.

(4) If $A \in \mathcal{NP}$ and B is \mathcal{NP}-complete, then $B \leq_{\mathcal{P}} A$ implies A is \mathcal{NP}-complete.
Implications

(1) Since SAT is \mathcal{NP}-complete, we have not defined an empty concept.

(2) If SAT $\in \mathcal{P}$, then $\mathcal{P} = \mathcal{NP}$.

(3) If $\mathcal{P} = \mathcal{NP}$, then SAT $\in \mathcal{P}$.

(4) If $A \in \mathcal{NP}$ and B is \mathcal{NP}-complete, then $B \leq_p A$ implies A is \mathcal{NP}-complete.

Proof:

- Let $C \in \mathcal{NP}$.
- Then $C \leq_p B$ since B is \mathcal{NP}-complete.
- Since $B \leq_p A$ and \leq_p is transitive, $C \leq_p A$.
- Therefore, A is \mathcal{NP}-hard and, finally, \mathcal{NP}-complete.
Implications (cont)

(5) This gives a simple two-part strategy for showing a decision problem A is \mathcal{NP}-complete.

(a) Show $A \in \mathcal{NP}$.

(b) Pick an \mathcal{NP}-complete problem B and show $B \leq_p A$.
\mathcal{NP}-completeness Proof Template

To show that decision problem B is \mathcal{NP}-complete:

1. $B \in \mathcal{NP}$
 - Give a polynomial time, non-deterministic algorithm that accepts B.
 1. Given an instance X of B, **guess** evidence Y.
 2. **Check** whether Y is evidence that $X \in B$. If so, accept X.

2. B is \mathcal{NP}-hard.
 - Choose a known \mathcal{NP}-complete problem, A.
 - Describe a polynomial-time transformation T of an arbitrary instance of A to a [not necessarily arbitrary] instance of B.
 - Show that $X \in A$ if and only if $T(X) \in B$.

NP-completeness Proof Template

To show that decision problem \(B \) is \(\mathcal{NP} \)-complete:

1. \(B \in \mathcal{NP} \)

 - Give a polynomial time, non-deterministic algorithm that accepts \(B \).

 1. Given an instance \(X \) of \(B \), **guess** evidence \(Y \).

 2. **Check** whether \(Y \) is evidence that \(X \in B \). If so, accept \(X \).

2. \(B \) is \(\mathcal{NP} \)-hard.

 - Choose a known \(\mathcal{NP} \)-complete problem, \(A \).

 - Describe a polynomial-time transformation \(T \) of an **arbitrary** instance of \(A \) to a [not necessarily arbitrary] instance of \(B \).

 - Show that \(X \in A \) if and only if \(T(X) \in B \).
3-SATISFIABILITY (3SAT)

Instance: A Boolean expression E in CNF such that each clause contains exactly 3 literals.

Question: Is there a satisfying assignment for E?

A special case of SAT.

One might hope that 3SAT is easier than SAT.
3SAT is \(\mathcal{NP} \)-complete

(1) 3SAT \(\in \mathcal{NP} \).

procedure nd-3SAT(E) {
 for (i = 1 to n)
 \(x[i] = \text{nd-choice}(\text{TRUE, FALSE}) \);
 Evaluate E for the guessed truth assignment.
 if (E evaluates to TRUE)
 ACCEPT;
 else
 REJECT;
}

nd-3SAT is a polynomial-time nondeterministic algorithm that accepts 3SAT.
Proving 3SAT \(\mathcal{NP}\)-hard

1. Choose SAT to be the known \(\mathcal{NP}\)-complete problem.
 - We need to show that SAT \(\leq_p\) 3SAT.
2. Let \(E = C_1 \cdot C_2 \cdots C_k\) be any instance of SAT.

Strategy: Replace any clause \(C_i\) that does not have exactly 3 literals with two or more clauses having exactly 3 literals.

Let \(C_i = y_1 + y_2 + \cdots + y_j\) where \(y_1, \cdots, y_j\) are literals.

(a) \(j = 1\)

- Replace \((y_1)\) with

\[(y_1 + v + w) \cdot (y_1 + \overline{v} + w) \cdot (y_1 + v + \overline{w}) \cdot (y_1 + \overline{v} + \overline{w})\]

where \(v\) and \(w\) are new variables.
Proving 3SAT \mathcal{NP}-hard (cont)

(b) $j = 2$
- Replace $(y_1 + y_2)$ with $(y_1 + y_2 + z) \cdot (y_1 + y_2 + \overline{z})$ where z is a new variable.

(c) $j > 3$
- Replace $(y_1 + y_2 + \cdots + y_j)$ with

\[
(y_1 + y_2 + z_1) \cdot (y_3 + \overline{z_1} + z_2) \cdot (y_4 + \overline{z_2} + z_3) \cdots \cdot (y_{j-2} + \overline{z_{j-4}} + z_{j-3}) \cdot (y_{j-1} + y_j + \overline{z_{j-3}})
\]

where $z_1, z_2, \cdots, z_{j-3}$ are new variables.
- After replacements made for each C_i, a Boolean expression E' results that is an instance of 3SAT.
- The replacement clearly can be done by a polynomial-time deterministic algorithm.
(3) Show E is satisfiable iff E' is satisfiable.

- Assume E has a satisfying truth assignment.
- Then that extends to a satisfying truth assignment for cases (a) and (b).
- In case (c), assume y_m is assigned “true”.
- Then assign $z_t, t \leq m - 2$, true and $z_k, t \geq m - 1$, false.
- Then all the clauses in case (c) are satisfied.
Assume E' has a satisfying assignment.

By restriction, we have truth assignment for E.

(a) y_1 is necessarily true.

(b) $y_1 + y_2$ is necessarily true.

(c) Proof by contradiction:

\begin{itemize}
 \item If y_1, y_2, \cdots, y_j are all false, then $z_1, z_2, \cdots, z_{j-3}$ are all true.
 \item But then $(y_{j-1} + y_{j-2} + \overline{z_{j-3}})$ is false, a contradiction.
\end{itemize}

We conclude SAT \leq 3SAT and 3SAT is NP-complete.
Tree of Reductions

Reductions go down the tree.

Proofs that each problem $\in \mathcal{NP}$ are straightforward.
Perspective

The reduction tree gives us a collection of 12 diverse \(\mathcal{NP}\)-complete problems. The complexity of all these problems depends on the complexity of any one:

- If any \(\mathcal{NP}\)-complete problem is tractable, then they all are.

This collection is a good place to start when attempting to show a decision problem is \(\mathcal{NP}\)-complete.

Observation: If we find a problem is \(\mathcal{NP}\)-complete, then we should do something other than try to find a \(\mathcal{P}\)-time algorithm.
SAT \leq_p CLIQUE

(1) Easy to show CLIQUE in \mathcal{NP}.
(2) An instance of SAT is a Boolean expression

$$B = C_1 \cdot C_2 \cdots C_m,$$

where

$$C_i = y[i, 1] + y[i, 2] + \cdots + y[i, k_i].$$

Transform this to an instance of CLIQUE $G = (V, E)$ and K.

$$V = \{v[i, j] | 1 \leq i \leq m, 1 \leq j \leq k_i\}$$

Two vertices $v[i_1, j_1]$ and $v[i_2, j_2]$ are adjacent in G if $i_1 \neq i_2$
AND EITHER $y[i_1, j_1]$ and $y[i_2, j_2]$ are the same literal
OR $y[i_1, j_1]$ and $y[i_2, j_2]$ have different underlying variables.

$K = m$.
SAT \leq_p CLIQUE (cont)

Example: \(B = (x + y + \bar{z}) \cdot (\bar{x} + \bar{y} + z) \cdot (y + \bar{z}) \).

K = 3.

(3) B is satisfiable iff \(G \) has clique of size \(\geq K \).

- \(B \) is satisfiable implies there is a truth assignment such that \(y[i, j_i] \) is true for each \(i \).
- But then \(v[i, j_i] \) must be in a clique of size \(K = m \).
- If \(G \) has a clique of size \(\geq K \), then the clique must have size exactly \(K \) and there is one vertex \(v[i, j_i] \) in the clique for each \(i \).
- There is a truth assignment making each \(y[i, j_i] \) true.

That truth assignment satisfies \(B \).

We conclude that CLIQUE is \(\mathcal{NP} \)-hard, therefore \(\mathcal{NP} \)-complete.
Co-NP

- Note the asymmetry in the definition of NP.
 - The non-determinism can identify a clique, and you can verify it.
 - But what if the correct answer is “NO”? How do you verify that?
- Co-NP: The complements of problems in NP.
 - Is a boolean expression always false?
 - Is there no clique of size k?
- It seems unlikely that $NP = co-NP$.
Is \mathcal{NP}-complete $= \mathcal{NP}$?

- It has been proved that if $\mathcal{P} \neq \mathcal{NP}$, then \mathcal{NP}-complete $\neq \mathcal{NP}$.
- The following problems are not known to be in \mathcal{P} or \mathcal{NP}, but seem to be of a type that makes them unlikely to be in \mathcal{NP}.
 - GRAPH ISOMORPHISM: Are two graphs isomorphic?
 - COMPOSITE NUMBERS: For positive integer K, are there integers $m, n > 1$ such that $K = mn$?
 - LINEAR PROGRAMMING
PARTITION \leq_p \text{ KNAPSACK}

PARTITION is a special case of KNAPSACK in which

\[K = \frac{1}{2} \sum_{a \in A} s(a) \]

assuming \(\sum s(a) \) is even.

Assuming PARTITION is \(\mathcal{NP} \)-complete, KNAPSACK is \(\mathcal{NP} \)-complete.
“Practical” Exponential Problems

What about our $O(KN)$ dynamic prog algorithm?

Input size for KNAPSACK is $O(N \log K)$. Thus $O(KN)$ is exponential in $N \log K$.

The dynamic programming algorithm counts through numbers $1, \cdots, K$. Takes exponential time when measured by number of bits to represent K.

If K is “small” ($K = O(p(N))$), then algorithm has complexity polynomial in N and is truly polynomial in input size.

An algorithm that is polynomial-time if the numbers IN the input are “small” (as opposed to number OF inputs) is called a pseudo-polynomial time algorithm.
“Practical” Exponential Problems

- What about our $O(KN)$ dynamic prog algorithm?
- Input size for KNAPSACK is $O(N \log K)$
 - Thus $O(KN)$ is exponential in $N \log K$.
- The dynamic programming algorithm counts through numbers 1, ⋯, K. Takes exponential time when measured by number of bits to represent K.
“Practical” Exponential Problems

- What about our $O(KN)$ dynamic prog algorithm?
- Input size for KNAPSACK is $O(N \log K)$
 - Thus $O(KN)$ is exponential in $N \log K$.
- The dynamic programming algorithm counts through numbers $1, \cdots, K$. Takes exponential time when measured by number of bits to represent K.
- If K is “small” ($K = O(p(N))$), then algorithm has complexity polynomial in N and is truly polynomial in input size.
- An algorithm that is polynomial-time if the numbers IN the input are “small” (as opposed to number OF inputs) is called a **pseudo-polynomial** time algorithm.
“Practical” Problems (cont)

- Lesson: While KNAPSACK is \(\mathcal{NP} \)-complete, it is often not that hard.
- Many \(\mathcal{NP} \)-complete problems have no pseudo-polynomial time algorithm unless \(\mathcal{P} = \mathcal{NP} \).