Graph Algorithms

Graphs are useful for representing a variety of concepts:
- Data Structures
- Relationships
- Families
- Communication Networks
- Road Maps

A Tree Proof

- Definition: A free tree is a connected, undirected graph that has no cycles.
- Theorem: If T is a free tree having n vertices, then T has exactly $n - 1$ edges.
- Proof: By induction on n.
- Base Case: $n = 1$. T consists of 1 vertex and 0 edges.
- Inductive Hypothesis: The theorem is true for a tree having $n - 1$ vertices.
- Inductive Step:
 - If T has n vertices, then T contains a vertex of degree 1.
 - Remove that vertex and its incident edge to obtain T', a free tree with $n - 1$ vertices.
 - By IH, T' has $n - 2$ edges.
 - Thus, T has $n - 1$ edges.

Graph Traversals

Various problems require a way to traverse a graph — that is, visit each vertex and edge in a systematic way.

Three common traversals:
- Eulerian tours
 Traverse each edge exactly once
- Depth-first search
 Keeps vertices on a stack
- Breadth-first search
 Keeps vertices on a queue

Students should be familiar with inductive proofs, recursion, data structures, and programming at the CS3114 level.
Eulerian Tours

A circuit that contains every edge exactly once.

Example:

```
f
cia
da
```

Tour: b a f c d e.

Example:

```
f
cia
da
g
```

No Eulerian tour. How can you tell for sure?

Eulerian Tour Proof

- **Theorem:** A connected, undirected graph with \(m \) edges that has no vertices of odd degree has an Eulerian tour.
- **Proof:** By induction on \(m \).
- **Base Case:**
 - **Inductive Hypothesis:**
 - **Inductive Step:**
 - Start with an arbitrary vertex and follow a path until you return to the vertex.
 - Remove this circuit. What remains are connected components \(G_1, G_2, \ldots, G_k \) each with nodes of even degree and \(< m \) edges.
 - By IH, each connected component has an Eulerian tour.
 - Combine the tours to get a tour of the entire graph.

Depth First Search

```
void DFS(Graph G, int v) { // Depth first search
    PreVisit(G, v); // Take appropriate action
    G.setMark(v, VISITED);
    for (Edge w = each neighbor of v)
        if (G.getMark(G.v2(w)) == UNVISITED)
            DFS(G, G.v2(w));
    PostVisit(G, v); // Take appropriate action
}
```

Initial call: DFS(G, r) where \(r \) is the root of the DFS.

Cost: \(O(|V| + |E|) \).

Depth First Search Example

The directions are imposed by the traversal. This is the Depth First Search Tree.
DFS Tree

If we number the vertices in the order that they are marked, we get **DFS numbers**.

Lemma 7.2: Every edge \(e \in E \) is either in the DFS tree \(T \), or connects two vertices of \(G \), one of which is an ancestor of the other in \(T \).

Proof: Consider the first time an edge \((v, w)\) is examined, with \(v \) the current vertex.
- If \(w \) is unmarked, then \((v, w)\) is in \(T \).
- If \(w \) is marked, then \(w \) has a smaller DFS number than \(v \) AND \((v, w)\) is an unexamined edge of \(w \).
- Thus, \(w \) is still on the stack. That is, \(w \) is on a path from \(v \).

DFS for Directed Graphs

- **Main problem**: A connected graph may not give a single DFS tree.

 - Forward edges: \((1, 3)\)
 - Back edges: \((5, 1)\)
 - Cross edges: \((6, 1), (8, 7), (9, 5), (9, 8), (4, 2)\)
 - **Solution**: Maintain a list of unmarked vertices.
 - Whenever one DFS tree is complete, choose an arbitrary unmarked vertex as the root for a new tree.

Directed Cycles

Lemma 7.4: Let \(G \) be a directed graph. \(G \) has a directed cycle iff every DFS of \(G \) produces a back edge.

Proof:
- Suppose a DFS produces a back edge \((v, w)\).
 - \(v \) and \(w \) are in the same DFS tree, \(w \) an ancestor of \(v \).
 - \((v, w)\) and the path in the tree from \(w \) to \(v \) form a directed cycle.
- Suppose \(G \) has a directed cycle \(C \).
 - Do a DFS on \(G \).
 - Let \(w \) be the vertex of \(C \) with smallest DFS number.
 - Let \((v, w)\) be the edge of \(C \) coming into \(w \).
 - \(v \) is a descendant of \(w \) in a DFS tree.
 - Therefore, \((v, w)\) is a back edge.

Breadth First Search

- Like DFS, but replace stack with a queue.
- Visit vertex’s neighbors before going deeper in tree.
Breadth First Search Algorithm

```java
void BFS(Graph G, int start) {
    Queue Q(G.n());
    Q.enqueue(start);
    G.setMark(start, VISITED);
    while (!Q.isEmpty()) {
        int v = Q.dequeue(); // Take appropriate action
        PreVisit(G, v); // Take appropriate action
        for (Edge w = each neighbor of v)
            if (G.getMark(G.v2(w)) == UNVISITED) {
                G.setMark(G.v2(w), VISITED);
                Q.enqueue(G.v2(w));
            }
        PostVisit(G, v); // Take appropriate action
    }
}
```

Breadth First Search Example

Non-tree edges connect vertices at levels differing by 0 or 1.

We know this because if an edge had connected to a deeper level, then that target node would have been placed on the queue when the edge was encountered.

Topological Sort

Problem: Given a set of jobs, courses, etc. with prerequisite constraints, output the jobs in an order that does not violate any of the prerequisites.

```
J1 J2
J3 J4
J5 J7
J6
```

Topological Sort Algorithm

```
void topsort(Graph G) { // Top sort: recursive
    for (int i=0; i<G.n(); i++) // Initialize Mark
        G.setMark(i, UNVISITED);
    for (i=0; i<G.n(); i++) // Process vertices
        if (G.getMark(i) == UNVISITED)
            tophelp(G, i); // Call helper
}

void tophelp(Graph G, int v) { // Helper function
    G.setMark(v, VISITED);
    for (Edge w = each neighbor of v)
        if (G.getMark(G.v2(w)) == UNVISITED)
            tophelp(G, G.v2(w));
    printout(v); // PostVisit for Vertex v
}
```

Prints in reverse order.
Queue-based Topological Sort

```java
global function topsort(Graph G) { // Top sort: Queue
    Queue Q(G.n()); int Count[G.n()];
    for (int v=0; v<G.n(); v++) Count[v] = 0;
    for (v=0; v<G.n(); v++) // Process every edge
        for (Edge w each neighbor of v)
            Count[G.v2(w)]++; // Add to v2's count
    for (v=0; v<G.n(); v++) // Initialize Queue
        if (Count[v] == 0) Q.enqueue(v);
    while (!Q.isEmpty()) { // Process the vertices
        v = Q.dequeue(); // PreVisit for v
        printout(v); // PreVisit for v
        for (Edge w = each neighbor of v) {
            Count[G.v2(w)]--; // One less prereq
            if (Count[G.v2(w)]==0) Q.enqueue(G.v2(w));
        }
    }
}
```

Shortest Paths Problems

Input: A graph with weights or costs associated with each edge.

Output: The list of edges forming the shortest path.

Sample problems:
- Find the shortest path between two specified vertices.
- Find the shortest path from vertex S to all other vertices.
- Find the shortest path between all pairs of vertices.

Our algorithms will actually calculate only distances.

Shortest Paths Definitions

\(d(A, B) \) is the shortest distance from vertex A to B.

\(w(A, B) \) is the weight of the edge connecting A to B.
- If there is no such edge, then \(w(A, B) = \infty \).

Single Source Shortest Paths

Given start vertex \(s \), find the shortest path from \(s \) to all other vertices.

Try 1: Visit all vertices in some order, compute shortest paths for all vertices seen so far, then add the shortest path to next vertex \(x \).

Problem: Shortest path to a vertex already processed might go through \(x \).

Solution: Process vertices in order of distance from \(s \).
Dijkstra’s Algorithm Example

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>0</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>Process A</td>
<td>0</td>
<td>10</td>
<td>3</td>
<td>20</td>
<td>∞</td>
</tr>
<tr>
<td>Process C</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>20</td>
<td>18</td>
</tr>
<tr>
<td>Process B</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>10</td>
<td>18</td>
</tr>
<tr>
<td>Process D</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>10</td>
<td>18</td>
</tr>
<tr>
<td>Process E</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>10</td>
<td>18</td>
</tr>
</tbody>
</table>

Dijkstra’s Algorithm: Array (1)

```cpp
class Elem { public: int vertex, dist; }
int key(Elem x) { return x.dist; }
void Dijkstra(Graph G, int s) { // priority queue
temp.dist = 0; temp.vertex = s; E[0] = temp;
heap H(E, 1, G.e()); // Create the heap
for (int i=0; i<G.n(); i++) D[i] = INFINITY;
D[s] = 0;
for (i=0; i<G.n(); i++) { // Get distances
do { temp = H.removemin(); v = temp.vertex; } while (G.getMark(v) == VISITED);
G.setMark(v, VISITED);
if (D[v] == INFINITY) return; // Unreachable
}
}
```

Dijkstra’s Algorithm: Array (2)

```cpp
// Get mincost vertex
int minVertex(Graph G, int* D) {
int v; // Initialize v to an unvisited vertex;
for (int i=0; i<G.n(); i++) { if (G.getMark(i) == UNVISITED) { v = i; break; }
for (i++; i<G.n(); i++) if ((G.getMark(i)==UNVISITED) && (D[i]<D[v])) v = i;
return v;
}
```

Approach 1: Scan the table on each pass for closest vertex. Total cost: \(\Theta(V^2 + E) = \Theta(|V|^2) \).

Dijkstra’s Algorithm: Priority Queue (1)

```cpp
class Elem { public: int vertex, dist; }; int key(Elem x) { return x.dist; }
void Dijkstra(Graph G, int s) { // priority queue
Elem temp;
int D[G.n()]; Elem E[G.e()];
temp.dist = 0; temp.vertex = s; E[0] = temp;
heap H(E, 1, G.e()); // Create the heap
for (int i=0; i<G.n(); i++) { // Get distances
do { temp = H.removemin(); v = temp.vertex; } while (G.getMark(v) == VISITED);
G.setMark(v, VISITED);
if (D[v] == INFINITY) return; // Unreachable
}
```
Dijkstra's Algorithm: Priority Queue (2)

```java
for (Edge w = each neighbor of v) {
    if (D[G.v2(w)] > (D[v] + G.weight(w))) {
        D[G.v2(w)] = D[v] + G.weight(w);
        temp.dist = D[G.v2(w)];
        temp.vertex = G.v2(w);
        H.insert(temp); // Insert new distance
    }
}
```

- Approach 2: Store unprocessed vertices using a min-heap to implement a priority queue ordered by D value. Must update priority queue for each edge.
- Total cost: $\Theta((|V| + |E|) \log |V|)$.

All Pairs Shortest Paths

- For every vertex $u, v \in V$, calculate $d(u, v)$.
- Could run Dijkstra's Algorithm $|V|$ times.
- Better is Floyd's Algorithm.
- Define a k-path from u to v to be any path whose intermediate vertices all have indices less than k.

Floyd's Algorithm

```java
void Floyd(Graph G) { // All-pairs shortest paths
    int D[G.n()][G.n()]; // Store distances
    for (int i=0; i<G.n(); i++)
        for (int j=0; j<G.n(); j++)
            D[i][j] = G.weight(i, j);
    for (int k=0; k<G.n(); k++) // Compute k paths
        for (int i=0; i<G.n(); i++)
            for (int j=0; j<G.n(); j++)
                if (D[i][j] > (D[i][k] + D[k][j]))
                    D[i][j] = D[i][k] + D[k][j];
}
```

Minimum Cost Spanning Trees

Minimum Cost Spanning Tree (MST) Problem:
- Input: An undirected, connected graph G.
- Output: The subgraph of G that
 - has minimum total cost as measured by summing the values for all of the edges in the subset, and
 - keeps the vertices connected.
Key Theorem for MST

Let V_1, V_2 be an arbitrary, non-trivial partition of V. Let (v_1, v_2), $v_1 \in V_1, v_2 \in V_2$, be the cheapest edge between V_1 and V_2. Then (v_1, v_2) is in some MST of G.

Proof:
- Let T be an arbitrary MST of G.
- If (v_1, v_2) is in T, then we are done.
- Otherwise, adding (v_1, v_2) to T creates a cycle C.
- At least one edge (u_1, u_2) of C other than (v_1, v_2) must be between V_1 and V_2.
- $c(u_1, u_2) \geq c(v_1, v_2)$.
- Let $T' = T \cup \{(v_1, v_2)\} - \{(u_1, u_2)\}$.
- Then, T' is a spanning tree of G and $c(T') \leq c(T)$.
- But $c(T)$ is minimum cost.

Therefore, $c(T') = c(T)$ and T' is a MST containing (v_1, v_2).

Key Theorem Figure

Prim's MST Algorithm (1)

```c
void Prim(Graph G, int s) { // Prim's MST alg
    int D[G.n()]; int V[G.n()]; // Distances
    for (int i=0; i<G.n(); i++) // Initialize
        D[i] = INFINITY;
    D[s] = 0;
    for (i=0; i<G.n(); i++) { // Process vertices
        v = minVertex(G, D);
        G.setMark(v, VISITED);
        if (v != s) AddEdgetoMST(V[v], v);
        if (D[v] == INFINITY) return; //v unreachable
        for (Edge w = each neighbor of v)
            if (D[G.v2(w)] > G.weight(w)) {
                D[G.v2(w)] = G.weight(w); // Update dist
                V[G.v2(w)] = v; // who came from
            }
    }
}
```

Prim's MST Algorithm (2)

```c
int minVertex(Graph G, int D) {
    int v; // Initialize v to any unvisited vertex
    for (int i=0; i<G.n(); i++)
        if (G.getMark(i) == UNVISITED)
            v = i; break;
    for (i=0; i<G.n(); i++) // Find smallest value
        if ((G.getMark(i)==UNVISITED) && (D[i]<D[v]))
            v = i;
    return v;
}
```

This is an example of a greedy algorithm.

There can only be multiple MSTs when there are edges with equal cost.
Alternative Prim’s Implementation (1)

Like Dijkstra’s algorithm, can implement with priority queue.

```c
void Prim(Graph G, int s) {
    int v; // The current vertex
    int D[G.n()]; // Distance array
    int V[G.n()]; // Who’s closest
    Elem temp; // Heap array
    temp.distance = 0; temp.vertex = s; // Initialize heap array
    H[E, 0, G.e()]; // Create the heap
    for (int i=0; i<G.n(); i++) D[i] = INFINITY;
    D[s] = 0;
}
```

Kruskal’s MST Algorithm (1)

```c
Kruskel(Graph G) { // Kruskal’s MST algorithm
    Gntree A(G.n()); // Equivalence class array
    Elem E[G.e()]; // Array of edges for min-heap
    int edgecnt = 0;
    for (int i=0; i<G.n(); i++) // Put edges into E
        for (Edge w = G.first(i); G.isEdge(w); w = G.next(w)) {
            E[edgecnt].weight = G.weight(w);
            E[edgecnt++].edge = w;
        }
    heap H(E, edgecnt, edgecnt); // Heapify edges
    int numMST = G.n(); // Init w/ n equiv classes
    for (i=0; numMST>1; i++) { // Combine
        Elem temp = H.removemin(); // Next cheap edge
        Edge w = temp.edge;
        int v = G.v1(w); int u = G.v2(w);
        if (A.differ(v, u)) { // If different
            A.UNION(v, u); // Combine
            AddEdgetoMST(G.v1(w), G.v2(w)); // Add
            numMST--; // Now one less MST
        }
    }
}
```

How do we compute function MSTof(v)?
Solution: UNION-FIND algorithm (Section 4.3).
Kruskal’s Algorithm Example

<table>
<thead>
<tr>
<th>Process edge (E, F)</th>
<th>Step 1 A B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Initial</td>
</tr>
<tr>
<td></td>
<td>Step 1 A B</td>
</tr>
<tr>
<td></td>
<td>Process edge (E, F)</td>
</tr>
<tr>
<td></td>
<td>Process edge (C, D)</td>
</tr>
<tr>
<td></td>
<td>Process edge (C, D)</td>
</tr>
<tr>
<td></td>
<td>Process edge (C, D)</td>
</tr>
</tbody>
</table>

Total cost: $\Theta(|V| + |E| \log |E|)$.

Matching

- Suppose there are n workers that we want to work in teams of two. Only certain pairs of workers are willing to work together.
- **Problem**: Form as many compatible non-overlapping teams as possible.
- **Model using G**, an undirected graph.
 - Join vertices if the workers will work together.
 - A **matching** is a set of edges in G with no vertex in more than one edge (the edges are independent).
 - A **maximal matching** has no free pairs of vertices that can extend the matching.
 - A **maximum matching** has the greatest possible number of edges.
 - A **perfect matching** includes every vertex.

Very Dense Graphs (1)

Theorem: Let $G = (V, E)$ be an undirected graph with $|V| = 2n$ and every vertex having degree $\geq n$. Then G contains a perfect matching.

Proof: Suppose that G does not contain a perfect matching.

- Let $M \subseteq E$ be a max matching. $|M| < n$.
- There must be two unmatched vertices v_1, v_2 that are not adjacent.
- Every vertex adjacent to v_1 or to v_2 is matched.
- Let $M' \subseteq M$ be the set of edges involved in matching the neighbors of v_1 and v_2.
- There are $\geq 2n$ edges from v_1 and v_2 to vertices covered by M', but $|M'| < n$.

Very Dense Graphs (2)

Proof: (continued)

- Thus, some edge of M' is adjacent to 3 edges from v_1 and v_2.
- Let (u_1, u_2) be such an edge.
- Replacing (u_1, u_2) with (v_1, u_2) and (v_2, u_1) results in a larger matching.
- Theorem proven by contradiction.
Generalizing the Insight

- \(u_1, u_2, u_3, v_1, v_2 \) is a path from an unmatched vertex to an unmatched vertex such that alternate edges are unmatched and matched.
- In one step, switch unmatched and matched edges.
- Let \(G = (V, E) \) be an undirected graph and \(M \subseteq E \) a matching.
- An alternating path \(P \) goes from \(v \) to \(u \), consists of alternately matched and unmatched edges, and both \(v \) and \(u \) are not in the match.

The Alternating Path Theorem (1)

Theorem: A matching is maximum iff it has no alternating paths.

Proof:
- Clearly, if a matching has alternating paths, then it is not maximum.
- Suppose \(M \) is a non-maximum matching.
- Let \(M' \) be any maximum matching. Then, \(|M'| > |M| \).
- Let \(M \oplus M' \) be the symmetric difference of \(M \) and \(M' \):
 \[M \oplus M' = M \cup M' - (M \cap M') \]
- \(G' = (V, M \oplus M') \) is a subgraph of \(G \) having maximum degree \(\leq 2 \).

The Alternating Path Theorem (2)

Proof: (continued)
- Therefore, the connected components of \(G' \) are either even-length cycles or a path with alternating edges.
- Since \(|M'| > |M| \), there must be a component of \(G' \) that is an alternating path having more \(M' \) edges than \(M \) edges.
Bipartite Matching

- A bipartite graph $G = (U, V, E)$ consists of two disjoint sets of vertices U and V together with edges E such that every edge has an endpoint in U and an endpoint in V.
- Bipartite matching naturally models a number of assignment problems, such as assignment of workers to jobs.
- Alternating paths will work to find a maximum bipartite matching. An alternating path always has one end in U and the other in V.
- If we direct unmatched edges from U to V and matched edges from V to U, then a directed path from an unmatched vertex in U to an unmatched vertex in V is an alternating path.

Algorithm for Maximum Bipartite Matching

Construct BFS subgraph from the set of unmatched vertices in U until a level with unmatched vertices in V is found.

Greedily select a maximal set of disjoint alternating paths.

Augment along each path independently.

Repeat until no alternating paths remain.

Time complexity $O((|V| + |E|) \sqrt{|V|})$.

Network Flows

Models distribution of utilities in networks such as oil pipelines, waters systems, etc. Also, highway traffic flow.

Simplest version:

A network is a directed graph $G = (V, E)$ having a distinguished source vertex s and a distinguished sink vertex t. Every edge (u, v) of G has a capacity $c(u, v) \geq 0$. If $(u, v) \notin E$, then $c(u, v) = 0$. Each edge (u, v) has a capacity $c(u, v)$.
Network Flow Graph

Network Flow Definitions

A flow in a network is a function \(f : V \times V \rightarrow R \) with the following properties.

(i) **Skew Symmetry:**
\[\forall v, w \in V, \quad f(v, w) = -f(w, v). \]

(ii) **Capacity Constraint:**
\[\forall v, w \in V, \quad f(v, w) \leq c(v, w). \]

If \(f(v, w) = c(v, w) \) then \((v, w)\) is saturated.

(iii) **Flow Conservation:**
\[\forall v \in V - \{s, t\}, \quad \sum_{w \in V} f(v, w) = 0. \]

Equivalently,
\[\forall v \in V - \{s, t\}, \quad \sum_{u \in V} f(u, v) = \sum_{w \in V} f(v, w). \]

In other words, flow into \(v \) equals flow out of \(v \).

Flow Example

Edges are labeled "capacity, flow". Can omit edges w/o capacity and non-negative flow. The **value** of a flow is
\[|f| = \sum_{w \in V} f(s, w) + \sum_{w \in V} f(w, t). \]

Max Flow Problem

Problem: Find a flow of maximum value.

Cut \((X, X')\) is a partition of \(V \) such that \(s \in X, t \in X' \).

The **capacity** of a cut is
\[c(X, X') = \sum_{v \in X, w \in X'} c(v, w). \]

A **min cut** is a cut of minimum capacity.
Cut Flows

For any flow f, the **flow across a cut** is:

$$f(X, X') = \sum_{v \in X, w \in X'} f(v, w).$$

Lemma: For all flows f and all cuts (X, X'), $f(X, X') = |f|$.

- Clearly, the flow out of $s = |f|$ = the flow into t.
- It can be proved that the flow across every other cut is also $|f|$.

Corollary: The value of any flow is less than or equal to the capacity of a min cut.

Residual Graph

Given any flow f, the **residual capacity** of the edge is

$$\text{res}(v, w) = c(v, w) - f(v, w) \geq 0.$$

Residual graph is a network $R = (V, E_R)$ where E_R contains edges of non-zero residual capacity.

![Residual Graph Image]

Observations

- Any flow in R can be added to F to obtain a larger flow in G.
- In fact, a max flow f' in R plus the flow f (written $f + f'$) is a max flow in G.
- Any path from s to t in R can carry a flow equal to the smallest capacity of any edge on it.
 - Such a path is called an **augmenting path**.
 - For example, the path $s, 1, 2, t$
 - can carry a flow of 2 units = $c(1, 2)$.

Max-flow Min-cut Theorem

The following are equivalent:

(i) f is a max flow.
(ii) f has no augmenting path in R.
(iii) $|f| = c(X, X')$ for some min cut (X, X').

Proof:

(i) \Rightarrow (ii):

- If f has an augmenting path, then f is not a max flow.
Max-flow Min-cut Theorem (2)

(ii) ⇒ (iii):
- Suppose \(f \) has no augmenting path in \(R \).
- Let \(X \) be the subset of \(V \) reachable from \(s \) and \(X' = V - X \).
- Then \(s \in X, t \in X' \), so \((X, X')\) is a cut.
- For all \(v \in X, w \in X' \), \(\text{res}(v, w) = c(v, w) - f(v, w) = 0 \).
- \(f(X \cap X') = \sum_{v \in X, w \in X'} c(v, w) = c(X, X') \).
- By Lemma, \(|f| = c(X, X') \) and \((X, X')\) is a min cut.

Max-flow Min-cut Theorem (3)

(iii) ⇒ (i):
- Let \(f \) be a flow such that \(|f| = c(X, X') \) for some (min) cut \((X, X')\).
- By Lemma, all flows \(f' \) satisfy \(|f'| \leq c(X, X') = |f| \).

Thus, \(f \) is a max flow.

Max-flow Min-cut Corollary

Corollary: The value of a max flow equals the capacity of a min cut.
This suggests a strategy for finding a max flow.

\[R = G; f = 0; \]
\[\text{repeat} \]
\[\text{find a path from } s \text{ to } t \text{ in } R; \]
\[\text{augment along path to get a larger flow } f; \]
\[\text{update } R \text{ for new flow}; \]
\[\text{until } R \text{ has no path } s \text{ to } t. \]

This is the Ford-Fulkerson algorithm.

If capacities are all rational, then it always terminates with \(f \) equal to max flow.

Edmonds-Karp Algorithm

For integral capacities.

Select an augmenting path in \(R \) with minimum number of edges.

Performance: \(O(|V|^2) \).

There are numerous other approaches to finding augmenting paths, giving a variety of different algorithms.

Network flow remains an active research area.

Line 4: Because no augmenting path.
Line 5: Because we know the residuals are all 0.

In other words, look at the capacity of \(G \) at the cut separating \(s \) from \(t \) in the residual graph. This must be a min cut (for \(G \)) with capacity \(|f|\).

Problem with Ford-Fulkerson:
Draw graph with nodes nodes \(s, t, a, \) and \(b \). Flow from \(S \) to \(a \) and \(b \) is \(M \), flow from \(a \) and \(b \) to \(t \) is \(M \), flow from \(a \) to \(b \) is 1.

Now, pick \(s-a-b-t \).
Then \(s-b-a-t \). (reverse 1 unit of flow).
Repeat \(M \) times.
\(M \) is unrelated to the size of \(V, E \), so this is potentially exponential.