Graph Algorithms

Graphs are useful for representing a variety of concepts:
- Data Structures
- Relationships
- Families
- Communication Networks
- Road Maps

A Tree Proof

Definition: A free tree is a connected, undirected graph that has no cycles.

Theorem: If \(T \) is a free tree having \(n \) vertices, then \(T \) has exactly \(n - 1 \) edges.

Proof: By induction on \(n \).
- Base Case: \(n = 1 \). \(T \) consists of 1 vertex and 0 edges.
- Inductive Hypothesis: The theorem is true for a tree having \(n - 1 \) vertices.
- Inductive Step:
 - If \(T \) has \(n \) vertices, then \(T \) contains a vertex of degree 1.
 - Remove that vertex and its incident edge to obtain \(T' \), a free tree with \(n - 1 \) vertices.
 - By IH, \(T' \) has \(n - 2 \) edges.
 - Thus, \(T \) has \(n - 1 \) edges.

Graph Traversals

Various problems require a way to traverse a graph – that is, visit each vertex and edge in a systematic way.

Three common traversals:
- Eulerian tours
 Traverse each edge exactly once
- Depth-first search
 Keeps vertices on a stack
- Breadth-first search
 Keeps vertices on a queue
Eulerian Tours

A circuit that contains every edge exactly once.

Example:

```
f
ce
ba
d
```

Tour: b a f c d e.

Example:

```
f
ce
ba
d
g
```

No Eulerian tour. How can you tell for sure?

Eulerian Tours

A circuit that contains every edge exactly once.

Example:

```
f
ce
ba
d
```

Tour: b a f c d e.

Example:

```
f
ce
ba
d
g
```

No Eulerian tour. How can you tell for sure?

Eulerian Tour Proof

- **Theorem:** A connected, undirected graph with \(m \) edges that has no vertices of odd degree has an Eulerian tour.
- **Proof:** By induction on \(m \).
- **Base Case:**
 - Inductive Hypothesis:
 - Inductive Step:
 - Start with an arbitrary vertex and follow a path until you return to the vertex.
 - Remove this circuit. What remains are connected components \(G_1, G_2, ..., G_k \) each with nodes of even degree and \(< m \) edges.
 - By IH, each connected component has an Eulerian tour.
 - Combine the tours to get a tour of the entire graph.

Depth First Search

```java
void DFS(Graph G, int v) { // Depth first search
    PreVisit(G, v); // Take appropriate action
    G.setMark(v, VISITED);
    for (Edge w = each neighbor of v)
        if (G.getMark(G.v2(w)) == UNVISITED)
            DFS(G, G.v2(w));
    PostVisit(G, v); // Take appropriate action
}
```

Initial call: `DFS(G, r)` where \(r \) is the root of the DFS.

Cost: \(O(|V| + |E|) \).

Depth First Search Example

The directions are imposed by the traversal. This is the Depth First Search Tree.
DFS Tree

If we number the vertices in the order that they are marked, we get **DFS numbers**.

Lemma 7.2: Every edge $e \in E$ is either in the DFS tree T, or connects two vertices of G, one of which is an ancestor of the other in T.

Proof: Consider the first time an edge (v, w) is examined, with v the current vertex.
- If w is unmarked, then (v, w) is in T.
- If w is marked, then w has a smaller DFS number than v AND (v, w) is an unexamined edge of w.
- Thus, w is still on the stack. That is, w is on a path from v.

DFS for Directed Graphs

- Main problem: A connected graph may not give a single DFS tree.
- Forward edges: $(1, 3)$
- Back edges: $(5, 1)$
- Cross edges: $(6, 1), (8, 7), (9, 5), (9, 8), (4, 2)$
- **Solution:** Maintain a list of unmarked vertices. Whenever one DFS tree is complete, choose an arbitrary unmarked vertex as the root for a new tree.

Directed Cycles

Lemma 7.4: Let G be a directed graph. G has a directed cycle iff every DFS of G produces a back edge.

Proof:
- Suppose a DFS produces a back edge (v, w).
 - v and w are in the same DFS tree, w an ancestor of v.
 - (v, w) and the path in the tree from w to v form a directed cycle.
- Suppose G has a directed cycle C.
 - Do a DFS on G.
 - Let w be the vertex of C with smallest DFS number.
 - Let (v, w) be the edge of C coming into w.
 - v is a descendant of w in a DFS tree.
 - Therefore, (v, w) is a back edge.

Breadth First Search

- Like DFS, but replace stack with a queue.
- Visit vertex's neighbors before going deeper in tree.
Breadth First Search Algorithm

```java
void BFS(Graph G, int start) {
    Queue Q(G.n());
    Q.enqueue(start);
    G.setMark(start, VISITED);
    while (!Q.isEmpty()) {
        int v = Q.dequeue(); // Take appropriate action
        PreVisit(G, v); // Take appropriate action
        for (Edge w = each neighbor of v)
            if (G.getMark(G.v2(w)) == UNVISITED) {
                G.setMark(G.v2(w), VISITED);
                Q.enqueue(G.v2(w));
            }
        PostVisit(G, v); // Take appropriate action
    }
}
```

Non-tree edges connect vertices at levels differing by 0 or 1.

Topological Sort

Problem: Given a set of jobs, courses, etc. with prerequisite constraints, output the jobs in an order that does not violate any of the prerequisites.

```
J1 J2
J3 J4
J5 J7
J6
```

Topological Sort Algorithm

```java
void topsort(Graph G) { // Top sort: recursive
    for (int i=0; i<G.n(); i++) // Initialize Mark
        G.setMark(i, UNVISITED);
    for (i=0; i<G.n(); i++) // Process vertices
        if (G.getMark(i) == UNVISITED)
            tophelp(G, i); // Call helper
}
```

Prints in reverse order.
Queue-based Topological Sort

```c
void topsort(Graph G) { // Top sort: Queue
    Queue Q(G.n()); int Count[G.n()];
    for (int v=0; v<G.n(); v++) Count[v] = 0;
    for (v=0; v<G.n(); v++) // Process every edge
        for (Edge w each neighbor of v)
            Count[G.v2(w)]++; // Add to v2’s count
    for (v=0; v<G.n(); v++) // Initialize Queue
        if (Count[v] == 0) Q.enqueue(v);
    while (!Q.isEmpty()) { // Process the vertices
        int v = Q.dequeue(); // PreVisit for v
        printout(v);
        for (Edge w = each neighbor of v) {
            Count[G.v2(w)]--; // One less prereq
            if (Count[G.v2(w)]==0) Q.enqueue(G.v2(w));
        }
    }
}
```

Shortest Paths Problems

Input: A graph with weights or costs associated with each edge.

Output: The list of edges forming the shortest path.

Sample problems:
- Find the shortest path between two specified vertices.
- Find the shortest path from vertex S to all other vertices.
- Find the shortest path between all pairs of vertices.

Our algorithms will actually calculate only distances.

Shortest Paths Definitions

d(A, B) is the shortest distance from vertex A to B.

w(A, B) is the weight of the edge connecting A to B.
- If there is no such edge, then w(A, B) = ∞.

Single Source Shortest Paths

Given start vertex s, find the shortest path from s to all other vertices.

Try 1: Visit all vertices in some order, compute shortest paths for all vertices seen so far, then add the shortest path to next vertex x.

Problem: Shortest path to a vertex already processed might go through x.
Solution: Process vertices in order of distance from s.
Dijkstra's Algorithm Example

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>0</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>Process A</td>
<td>0</td>
<td>10</td>
<td>3</td>
<td>20</td>
<td>∞</td>
</tr>
<tr>
<td>Process C</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>20</td>
<td>18</td>
</tr>
<tr>
<td>Process B</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>10</td>
<td>18</td>
</tr>
<tr>
<td>Process D</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>10</td>
<td>18</td>
</tr>
<tr>
<td>Process E</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>10</td>
<td>18</td>
</tr>
</tbody>
</table>

Dijkstra's Algorithm: Array (1)

```cpp
void Dijkstra(Graph G, int s) { // Use array
    int D[G.n()];
    for (int i=0; i<G.n(); i++) // Initialize
        D[i] = INFINITY;
    D[s] = 0;
    for (i=0; i<G.n(); i++) { // Process vertices
        int v = minVertex(G, D);
        if (D[v] == INFINITY) return; // Unreachable
        G.setMark(v, VISITED);
        for (Edge w = each neighbor of v)
            if (D[G.v2(w)] > (D[v] + G.weight(w)))
                D[G.v2(w)] = D[v] + G.weight(w);
    }
}
```

Dijkstra's Algorithm: Array (2)

```cpp
// Get mincost vertex
int minVertex(Graph G, int*D) {
    int v; // Initialize v to an unvisited vertex;
    for (int i=0; i<G.n(); i++)
        if (G.getMark(i) == UNVISITED)
            { v = i; break; }
    for (i++; i<G.n(); i++) // Find smallest D val
        if ((G.getMark(i) == UNVISITED) && (D[i]<D[v]))
            v = i;
    return v;
}
```

Dijkstra's Algorithm: Priority Queue (1)

```cpp
class Elem { public: int vertex, dist; };
int key(Elem x) { return x.dist; }
void Dijkstra(Graph G, int s) { // priority queue
    int v; // Initialize v to an unvisited vertex;
    for (int i=0; i<G.n(); i++)
        if (G.getMark(i) == UNVISITED)
            { v = i; break; }
    for (i++; i<G.n(); i++) // Find smallest D val
        if ((G.getMark(i)==UNVISITED) && (D[i]<D[v]))
            v = i;
    Approach 1: Scan the table on each pass for closest vertex.
    Total cost: Θ(|V|^2 + |E|) = Θ(|V|^2).
```
Dijkstra's Algorithm: Priority Queue (2)

```java
for (Edge w = each neighbor of v)
    if (D[G.v2(w)] > (D[v] + G.weight(w))) {
        D[G.v2(w)] = D[v] + G.weight(w);
        temp.dist = D[G.v2(w)];
        temp.vertex = G.v2(w);
        H.insert(temp); // Insert new distance
    }
}
```

- Approach 2: Store unprocessed vertices using a min-heap to implement a priority queue ordered by D value. Must update priority queue for each edge.
- Total cost: \(\Theta((|V| + |E|) \log |V|) \).

All Pairs Shortest Paths

- For every vertex \(u, v \in V \), calculate \(d(u, v) \).
- Could run Dijkstra's Algorithm \(|V|\) times.
- Better is Floyd's Algorithm.
- Define a k-path from \(u \) to \(v \) to be any path whose intermediate vertices all have indices less than \(k \).

Floyd's Algorithm

```java
void Floyd(Graph G) {
    int D[G.n()][G.n()]; // Store distances
    for (int i=0; i<G.n(); i++) // Initialize D
        for (int j=0; j<G.n(); j++)
            D[i][j] = G.weight(i, j);
    for (int k=0; k<G.n(); k++) // Compute k paths
        for (int i=0; i<G.n(); i++)
            for (int j=0; j<G.n(); j++)
                if (D[i][j] > (D[i][k] + D[k][j]))
                    D[i][j] = D[i][k] + D[k][j];
}
```

Minimum Cost Spanning Trees

Minimum Cost Spanning Tree (MST) Problem:
- Input: An undirected, connected graph \(G \).
- Output: The subgraph of \(G \) that
 - has minimum total cost as measured by summing the values for all of the edges in the subset, and
 - keeps the vertices connected.
Key Theorem for MST

Let \(V_1, V_2 \) be an arbitrary, non-trivial partition of \(V \). Let \((v_1, v_2), v_i \in V_1, v_j \in V_2 \), be the cheapest edge between \(V_1 \) and \(V_2 \). Then \((v_1, v_2)\) is in some MST of \(G \).

Proof:
- Let \(T \) be an arbitrary MST of \(G \).
- If \((v_1, v_2)\) is in \(T \), then we are done.
- Otherwise, adding \((v_1, v_2)\) to \(T \) creates a cycle \(C \).
- At least one edge \((u_1, u_2)\) of \(C \) other than \((v_1, v_2)\) must be between \(V_1 \) and \(V_2 \).
- \(c(u_1, u_2) \geq c(v_1, v_2) \).
- Let \(T' = T \cup \{(v_1, v_2)\} - \{(u_1, u_2)\} \).
- Then, \(T' \) is a spanning tree of \(G \) and \(c(T') \leq c(T) \).
- But \(c(T) \) is minimum cost.

Therefore, \(c(T') = c(T) \) and \(T' \) is a MST containing \((v_1, v_2)\).

Key Theorem Figure

![Key Theorem Figure](image)

Prim's MST Algorithm (1)

```c
void Prim(Graph G, int s) { // Prim's MST alg
    int D[G.n()]; int V[G.n()]; // Distances
    for (int i=0; i<G.n(); i++) // Initialize
        D[i] = INFINITY;
    D[s] = 0;
    for (i=0; i<G.n(); i++) // Process vertices
        int v = minVertex(G, D);
        G.setMark(v, VISITED);
        if (v != s) AddEdgetoMST(V[v], v);
        if (D[v] == INFINITY) return; //v unreachable
        for (Edge w = each neighbor of v)
            if (D[G.v2(w)] > G.weight(w)) {
                D[G.v2(w)] = G.weight(w); // Update dist
                V[G.v2(w)] = v; // who came from
            }
}
```

Prim's MST Algorithm (2)

```c
int minVertex(Graph G, int* D) {
    int v; // Initialize v to any unvisited vertex
    for (int i=0; i<G.n(); i++)
        if (G.getMark(i) == UNVISITED) {
            v = i; break;
        }
    for (i=0; i<G.n(); i++) // Find smallest value
        if ((G.getMark(i)==UNVISITED) && (D[i]<D[v]))
            v = i;
    return v;
}
```

This is an example of a **greedy** algorithm.
Alternative Prim's Implementation (1)

Like Dijkstra's algorithm, can implement with priority queue.

```c
void Prim(Graph G, int s) {  
    int v; // The current vertex  
    int D[G.n()]; // Distance array  
    int V[G.n()]; // Who's closest  
    Elem temp;  
    Elem E[G.e()]; // Heap array  
    temp.distance = 0; temp.vertex = s;  
    E[0] = temp; // Initialize heap array  
    heap H(E, 1, G.e()); // Create the heap  
    for (int i=0; i<G.n(); i++) D[i] = INFINITY;  
    D[s] = 0;  
}
```

Kruskal's MST Algorithm (1)

```c
Kruskel(Graph G) { // Kruskal’s MST algorithm  
    Gentree A(G.n()); // Equivalence class array  
    Elem E[G.e()]; // Array of edges for min-heap  
    int edgecnt = 0;  
    for (int i=0; i<G.n(); i++) { // Put edges into E  
        if (G.isEdge(w)) AddEdgetoMST(V[w1], V[w2]);  
        if (D[v] == INFINITY) return; // Unreachable  
        for (Edge w = each neighbor of v)  
            if (D[G.v2(w)] > G.weight(w)) { // Update D  
                D[G.v2(w)] = G.weight(w);  
                V[G.v2(w)] = v; // Who came from  
                temp.distance = D[G.v2(w)];  
                temp.vertex = G.v2(w);  
                H.insert(temp); // Insert dist in heap  
            }  
    }
}
```

How do we compute function \(MSTof(v) \)?
Solution: UNION-FIND algorithm (Section 4.3).
Kruskal’s Algorithm Example

Total cost: \(\Theta(|V| + |E| \log |E|) \).

Matching

- Suppose there are \(n \) workers that we want to work in teams of two. Only certain pairs of workers are willing to work together.
- **Problem**: Form as many compatible non-overlapping teams as possible.
- **Model**: Use \(G \), an undirected graph.
 - Join vertices if the workers will work together.
 - A matching is a set of edges in \(G \) with no vertex in more than one edge (the edges are independent).
 - A maximal matching has free pairs of vertices that can extend the matching.
 - A maximum matching has the greatest possible number of edges.
 - A perfect matching includes every vertex.

Very Dense Graphs (1)

Theorem: Let \(G = (V, E) \) be an undirected graph with \(|V| = 2n \) and every vertex having degree \(\geq n \). Then \(G \) contains a perfect matching.

Proof: Suppose that \(G \) does not contain a perfect matching.
- Let \(M \subset E \) be a max matching. \(|M| < n \).
- There must be two unmatched vertices \(v_1, v_2 \) that are not adjacent.
- Every vertex adjacent to \(v_1 \) or \(v_2 \) is matched.
- Let \(M' \subset M \) be the set of edges involved in matching the neighbors of \(v_1 \) and \(v_2 \).
- There are \(2n \) edges from \(v_1 \) and \(v_2 \) to vertices covered by \(M' \), but \(|M'| < n \).

Very Dense Graphs (2)

Proof: (continued)
- Thus, some edge of \(M' \) is adjacent to 3 edges from \(v_1 \) and \(v_2 \).
- Let \((u_1, u_2) \) be such an edge.
- Replacing \((u_1, u_2) \) with \((v_1, u_2) \) and \((v_2, u_1) \) results in a larger matching.
- **Theorem proven by contradiction.**

Cost is dominated by the edge sort.
Alternative: Use a min heap, quit when only one set left.
“Kth-smallest” implementation.
The Alternating Path Theorem (1)

Theorem: A matching is maximum iff it has no alternating paths.

Proof:
- Clearly, if a matching has alternating paths, then it is not maximum.
- Suppose \(M \) is a non-maximum matching.
- Let \(M' \) be any maximum matching. Then, \(|M'| > |M| \).
- Let \(M \oplus M' \) be the symmetric difference of \(M \) and \(M' \):
 \[
 M \oplus M' = M \cup M' - (M \cap M').
 \]
- \(G' = (V, M \oplus M') \) is a subgraph of \(G \) having maximum degree \(\leq 2 \).

The Alternating Path Theorem (2)

Proof: (continued)
- Therefore, the connected components of \(G' \) are either even-length cycles or a path with alternating edges.
- Since \(|M'| > |M| \), there must be a component of \(G' \) that is an alternating path having more \(M' \) edges than \(M \) edges.

The first point is the obvious part of the if. If there is an alternating path, simply switch the match and unmatched edges to augment the match.

Symmetric difference: Those in either, but not both.

The max degree is \(\leq 2 \) because a vertex matches one different vertex in \(M \) and \(M' \).
Bipartite Matching

- A bipartite graph $G = (U, V, E)$ consists of two disjoint sets of vertices U and V together with edges E such that every edge has an endpoint in U and an endpoint in V.
- Bipartite matching naturally models a number of assignment problems, such as assignment of workers to jobs.
- Alternating paths will work to find a maximum bipartite matching. An alternating path always has one end in U and the other in V.
- If we direct unmatched edges from U to V and matched edges from V to U, then a directed path from an unmatched vertex in U to an unmatched vertex in V is an alternating path.

Bipartite Matching Example

2, 8, 5, 10 is an alternating path.

1, 6, 3, 7, 4 and 2, 8, 5, 10 are disjoint alternating paths that we can augment independently.

Algorithm for Maximum Bipartite Matching

Construct BFS subgraph from the set of unmatched vertices in U until a level with unmatched vertices in V is found.

- Greedily select a maximal set of disjoint alternating paths.
- Augment along each path independently.
- Repeat until no alternating paths remain.

Time complexity $O((|V| + |E|)\sqrt{|V|})$.

Naive algorithm: Find a maximal matching (greedy algorithm).

For each vertex:
- Do a DFS or other search until an alternating path is found.
- Use the alternating path to improve the match.

$|V|(|V| + |E|)$

Order doesn’t matter. Find a path, remove its vertices, then repeat. Augment along the paths independently since they are disjoint.