Graph Algorithms

Graphs are useful for representing a variety of concepts:
- Data Structures
- Relationships
- Families
- Communication Networks
- Road Maps

A Tree Proof

Definition: A free tree is a connected, undirected graph that has no cycles.

Theorem: If T is a free tree having n vertices, then T has exactly $n - 1$ edges.

Proof: By induction on n.

Base Case: $n = 1$. T consists of 1 vertex and 0 edges.

Inductive Hypothesis: The theorem is true for a tree having $n - 1$ vertices.

Inductive Step:
- If T has n vertices, then T contains a vertex of degree 1.
- Remove that vertex and its incident edge to obtain T', a free tree with $n - 1$ vertices.
- By IH, T' has $n - 2$ edges.
- Thus, T has $n - 1$ edges.

Graph Traversals

Various problems require a way to traverse a graph— that is, visit each vertex and edge in a systematic way.

Three common traversals:
- Eulerian tours: Traverse each edge exactly once
- Depth-first search: Keeps vertices on a stack
- Breadth-first search: Keeps vertices on a queue
Eulerian Tours

A circuit that contains every edge exactly once.

Example:

\[
\begin{array}{c}
\text{Tour: b a f c d e.}
\end{array}
\]

Example:

\[
\begin{array}{c}
\text{No Eulerian tour. How can you tell for sure?}
\end{array}
\]

Eulerian Tour Proof

- **Theorem**: A connected, undirected graph with \(m \) edges that has no vertices of odd degree has an Eulerian tour.
- **Proof**: By induction on \(m \).
- **Base Case**:
 - Start with an arbitrary vertex and follow a path until you return to the vertex.
 - Remove this circuit. What remains are connected components \(G_1, G_2, ..., G_k \) each with nodes of even degree and \(< m \) edges.
 - By IH, each connected component has an Eulerian tour.
 - Combine the tours to get a tour of the entire graph.

Depth First Search

```java
void DFS(Graph G, int v) { // Depth first search
    PreVisit(G, v); // Take appropriate action
    G.setMark(v, VISITED);
    for (Edge w = each neighbor of v)
        if (G.getMark(G.v2(w)) == UNVISITED)
            DFS(G, G.v2(w));
    PostVisit(G, v); // Take appropriate action
}
```

Initial call: `DFS(G, r)` where \(r \) is the root of the DFS.

Cost: \(O(|V| + |E|) \).

Depth First Search Example

The directions are imposed by the traversal. This is the Depth First Search Tree.
DFS Tree

If we number the vertices in the order that they are marked, we get **DFS numbers**.

Lemma 7.2: Every edge \(e \in E \) is either in the DFS tree \(T \), or connects two vertices of \(G \), one of which is an ancestor of the other in \(T \).

Proof: Consider the first time an edge \((v, w)\) is examined, with \(v \) the current vertex.
- If \(w \) is unmarked, then \((v, w)\) is in \(T \).
- If \(w \) is marked, then \(w \) has a smaller DFS number than \(v \) AND \((v, w)\) is an unexamined edge of \(w \).
- Thus, \(w \) is still on the stack. That is, \(w \) is on a path from \(v \).

Directed Cycles

Lemma 7.4: Let \(G \) be a directed graph. \(G \) has a directed cycle iff every DFS of \(G \) produces a back edge.

Proof:
- Suppose a DFS produces a back edge \((v, w)\).
 - \(v \) and \(w \) are in the same DFS tree, \(w \) an ancestor of \(v \).
 - \((v, w)\) and the path in the tree from \(w \) to \(v \) form a directed cycle.
- Suppose \(G \) has a directed cycle \(C \).
 - Do a DFS on \(G \).
 - Let \(w \) be the vertex of \(C \) with smallest DFS number.
 - Let \((v, w)\) be the edge of \(C \) coming into \(w \).
 - \(v \) is a descendant of \(w \) in a DFS tree.
 - Therefore, \((v, w)\) is a back edge.

Breadth First Search

- Like DFS, but replace stack with a queue.
- Visit vertex’s neighbors before going deeper in tree.
Breadth First Search Algorithm

```java
void BFS(Graph G, int start) {
    Queue Q(G.n());
    Q.enqueue(start);
    G.setMark(start, VISITED);
    while (!Q.isEmpty()) {
        int v = Q.dequeue(); // Take appropriate action
        PreVisit(G, v); // Take appropriate action
        for (Edge w = each neighbor of v)
            if (G.getMark(G.v2(w)) == UNVISITED) {
                G.setMark(G.v2(w), VISITED);
                Q.enqueue(G.v2(w));
            }
        PostVisit(G, v); // Take appropriate action
    }
}
```

Breadth First Search Example

Non-tree edges connect vertices at levels differing by 0 or 1.

Topological Sort

Problem: Given a set of jobs, courses, etc. with prerequisite constraints, output the jobs in an order that does not violate any of the prerequisites.

```
J1 J2
J3 J4
J5 J7
J6
```

Topological Sort Algorithm

```java
void topsort(Graph G) { // Top sort: recursive
    for (int i=0; i<G.n(); i++) // Initialize Mark
        G.setMark(i, UNVISITED);
    for (i=0; i<G.n(); i++) // Process vertices
        if (G.getMark(i) == UNVISITED)
            tophelp(G, i); // Call helper
}
```

Prints in reverse order.
Queue-based Topological Sort

```c
void topsort(Graph G) { // Top sort: Queue
    Queue Q(G.n());
    int Count[G.n()];
    for (int v=0; v<G.n(); v++) Count[v] = 0;
    for (v=0; v<G.n(); v++) // Process every edge
        for (Edge w each neighbor of v)
            Count[G.v2(w)]++; // Add to v2’s count
    for (v=0; v<G.n(); v++) // Initialize Queue
        if (Count[v] == 0) Q.enqueue(v);
    while (!Q.isEmpty()) { // Process the vertices
        int v = Q.dequeue();
        printout(v); // PreVisit for v
        for (Edge w = each neighbor of v) {
            Count[G.v2(w)]--; // One less prereq
            if (Count[G.v2(w)] == 0) Q.enqueue(G.v2(w));
        }
    }
}
```

Shortest Paths Problems

Input: A graph with **weights** or **costs** associated with each edge.

Output: The list of edges forming the shortest path.

Sample problems:
- Find the shortest path between two specified vertices.
- Find the shortest path from vertex S to all other vertices.
- Find the shortest path between all pairs of vertices.

Our algorithms will actually calculate only **distances**.

Shortest Paths Definitions

- \(d(A, B)\) is the **shortest distance** from vertex A to B.
- \(w(A, B)\) is the **weight** of the edge connecting A to B.
 - If there is no such edge, then \(w(A, B) = \infty\).

Single Source Shortest Paths

Given start vertex \(s\), find the shortest path from \(s\) to all other vertices.

Try 1: Visit all vertices in some order, compute shortest paths for all vertices seen so far, then add the shortest path to next vertex \(x\).

Problem: Shortest path to a vertex already processed might go through \(x\).

Solution: Process vertices in order of distance from \(s\).
Dijkstra's Algorithm Example

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>0</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>Process A</td>
<td>0</td>
<td>10</td>
<td>3</td>
<td>20</td>
<td>∞</td>
</tr>
<tr>
<td>Process C</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>20</td>
<td>18</td>
</tr>
<tr>
<td>Process B</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>10</td>
<td>18</td>
</tr>
<tr>
<td>Process D</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>10</td>
<td>18</td>
</tr>
<tr>
<td>Process E</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>10</td>
<td>18</td>
</tr>
</tbody>
</table>

Dijkstra's Algorithm: Array (1)

```cpp
def Dijkstra(Graph G, int s) {  // Use array    int D[G.n()];    for (int i=0; i<G.n(); i++) // Initialize       D[i] = INFINITY;    D[s] = 0;    for (i=0; i<G.n(); i++) { // Process vertices       int v = minVertex(G, D);       if (D[v] == INFINITY) return; // Unreachable         G.setMark(v, VISITED);       for (Edge w = each neighbor of v)         if (D[G.v2(w)] > (D[v] + G.weight(w)))           D[G.v2(w)] = D[v] + G.weight(w);    }
```

Dijkstra's Algorithm: Array (2)

```cpp
int minVertex(Graph G, int* D) {    int v; // Initialize v to an unvisited vertex;    for (int i=0; i<G.n(); i++)     if (G.getMark(i) == UNVISITED) { v = i; break; }    for (i++; i<G.n(); i++) // Find smallest D val if ((G.getMark(i)==UNVISITED) && (D[i]<D[v])) v = i; return v;
```

Dijkstra's Algorithm: Priority Queue (1)

```cpp
class Elem {   public:   int vertex, dist;   };   int key(Elem x) { return x.dist; }   void Dijkstra(Graph G, int s) { // priority queue       int v;       Elem temp;       int D[G.n()];       Elem E[G.e()];       temp.dist = 0; temp.vertex = s; E[0] = temp;       heap H(E, 1, G.e()); // Create the heap       for (int i=0; i<G.n(); i++) // Get distances         do { temp = H.removemin(); v = temp.vertex; } while (G.getMark(v) == VISITED);       G.setMark(v, VISITED);       if (D[v] == INFINITY) return; // Unreachable   }
```
Dijkstra's Algorithm: Priority Queue (2)

for (Edge w = each neighbor of v)
if (D[G.v2(w)] > (D[v] + G.weight(w))) {
 D[G.v2(w)] = D[v] + G.weight(w);
 temp.dist = D[G.v2(w)];
 temp.vertex = G.v2(w);
 H.insert(temp); // Insert new distance
}

Approach 2: Store unprocessed vertices using a min-heap to implement a priority queue ordered by D value. Must update priority queue for each edge.

Total cost:
\[\Theta((|V| + |E|) \log |V|) \]

All Pairs Shortest Paths

- For every vertex \(u, v \in V \), calculate \(d(u, v) \).
- Could run Dijkstra's Algorithm \(|V|\) times.
- Better is Floyd's Algorithm.
- Define a \(k \)-path from \(u \) to \(v \) to be any path whose intermediate vertices all have indices less than \(k \).

Floyd's Algorithm

void Floyd(Graph G) { // All-pairs shortest paths
 int D[G.n()][G.n()]; // Store distances
 for (int i=0; i<G.n(); i++) // Initialize D
 for (int j=0; j<G.n(); j++)
 D[i][j] = G.weight(i, j);
 for (int k=0; k<G.n(); k++) // Compute k paths
 for (int i=0; i<G.n(); i++)
 for (int j=0; j<G.n(); j++)
 if (D[i][j] > (D[i][k] + D[k][j]))
 D[i][j] = D[i][k] + D[k][j];

Minimum Cost Spanning Trees

Minimum Cost Spanning Tree (MST) Problem:
- Input: An undirected, connected graph \(G \).
- Output: The subgraph of \(G \) that
 1. has minimum total cost as measured by summing the values for all of the edges in the subset, and
 2. keeps the vertices connected.
Key Theorem for MST
Let \(V_1, V_2 \) be an arbitrary, non-trivial partition of \(V \). Let \((v_1, v_2)\), \(v_i \in V_1, v_j \in V_2 \), be the cheapest edge between \(V_1 \) and \(V_2 \). Then \((v_1, v_2)\) is in some MST of \(G \).

Proof:
- Let \(T \) be an arbitrary MST of \(G \).
- If \((v_1, v_2)\) is in \(T \), then we are done.
- Otherwise, adding \((v_1, v_2)\) to \(T \) creates a cycle \(C \).
- At least one edge \((u_1, u_2)\) of \(C \) other than \((v_1, v_2)\) must be between \(V_1 \) and \(V_2 \).
- \(c(u_1, u_2) \geq c(v_1, v_2) \).
- Let \(T' = T \cup \{(v_1, v_2)\} \). Then, \(T' \) is a spanning tree of \(G \) and \(c(T') \leq c(T) \).
- But \(c(T) \) is minimum cost.
Therefore, \(c(T') = c(T) \) and \(T' \) is a MST containing \((v_1, v_2)\).

Prim's MST Algorithm (1)

```cpp
void Prim(Graph G, int s) { // Prim's MST alg
    int D[G.n()]; // Distances
    for (int i=0; i<G.n(); i++) // Initialize
        D[i] = INFINITY;
    D[s] = 0;
    for (i=0; i<G.n(); i++) // Process vertices
        if (G.getMark(i) == VISITED)
            continue;
        int v = minVertex(G, D);
        G.setMark(v, VISITED);
        if (D[v] != s) AddEdgeToMST(V[v], v);
        if (D[v] == INFINITY) return; //v unreachable
        for (Edge w = each neighbor of v)
            if (D[G.v2(w)] > G.weight(w)) {
                D[G.v2(w)] = G.weight(w); // Update dist
                V[G.v2(w)] = v; // who came from
            }
}
```

Prim's MST Algorithm (2)

```cpp
int minVertex(Graph G, int* D) {
    int v; // Initialize v to any unvisited vertex
    for (i=0; i<G.n(); i++)
        if (G.getMark(i) == UNVISITED) {
            v = i; break;
        }
    for (i=0; i<G.n(); i++) // Find smallest value
        if ((G.getMark(i)==UNVISITED) && (D[i]<D[v]))
            v = i;
    return v;
}
```

This is an example of a greedy algorithm.
Alternative Prim’s Implementation (1)

Like Dijkstra’s algorithm, can implement with priority queue.

void Prim(Graph G, int s) {
 int v; // The current vertex
 int D[G.n()]; // Distance array
 int V[G.n()]; // Who’s closest
 Elem temp;
 Elem E[G.e()]; // Heap array
 temp.distance = 0; temp.vertex = s;
 E[0] = temp; // Initialize heap array
 heap H(E, 1, G.e()); // Create the heap
 for (int i=0; i<G.n(); i++) D[i] = INFINITY;
 D[s] = 0;
}

Alternative Prim’s Implementation (2)

for (i=0; i<G.n(); i++) { // Now build MST
 do { temp = H.removemin(); v = temp.vertex; }
 while (G.getMark(v) == VISITED);
 G.setMark(v, VISITED);
 if (v != s) AddEdgetoMST(V[v], v);
 if (D[v] == INFINITY) return; // Unreachable
 for (Edge w = each neighbor of v)
 if (D[G.v2(w)] > G.weight(w)) { // Update D
 D[G.v2(w)] = G.weight(w);
 V[G.v2(w)] = v; // Who came from
 temp.distance = D[G.v2(w)];
 temp.vertex = G.v2(w);
 H.insert(temp); // Insert dist in heap
 }
}