Lower Bound Analysis

\[\log n! \leq \log n^2 = n \log n. \]
\[\log n! \geq \log \left(\frac{n}{2} \right)^{\frac{n}{2}} \geq \frac{1}{2} (n \log n - n). \]

- So, \(\log n! = \Theta(n \log n)\).
- Using the decision tree model, what is the average depth of a node?
- This is also \(\Theta(\log n!)\).

A Search Model (1)

Problem:
Given:
- A list \(L\) of \(n\) elements
- A search key \(X\)

Solve: Identify one element in \(L\) which has key value \(X\), if any exist.

Model:
- The key values for elements in \(L\) are unique.
- One comparison determines \(<\), \(\leq\), \(\geq\).
- Comparison is our only way to find ordering information.
- Every comparison costs the same.

A Search Model (2)

Goal: Solve the problem using the minimum number of comparisons.

- Cost model: Number of comparisons.
- (Implication) Access to every item in \(L\) costs the same (array).

Is this a reasonable model and goal?

Linear Search

General algorithm strategy: Reduce the problem.
- Compare \(X\) to the first element.
- If not done, then solve the problem for \(n-1\) elements.

\[
\text{Position} = \begin{cases}
1 & n = 1 \\
\text{position}(L, \text{lower}+1, \text{upper}, X); & n > 1
\end{cases}
\]

What equation represents the worst case cost?
Lower Bound on Problem

Theorem: Lower bound (in the worst case) for the problem is \(n \) comparisons.

Proof: By contradiction.
- Assume an algorithm \(A \) exists that requires only \(n - 1 \) (or less) comparisons of \(X \) with elements of \(L \).
- Since there are \(n \) elements of \(L \), \(A \) must have avoided comparing \(X \) with \(L[i] \) for some value \(i \).
- We can feed the algorithm an input with \(X \) in position \(i \).
- Such an input is legal in our model, so the algorithm is incorrect.

Is this proof correct?

Fixing the Proof (1)

Error #1: An algorithm need not consistently skip position \(i \).

Fix:
- On any given run of the algorithm, *some* element \(i \) gets skipped.
- It is possible that \(X \) is in position \(i \) at that time.

Fixing the Proof (2)

Error #2: Must allow comparisons between elements of \(L \).

Fix:
- Include the ability to “preprocess” \(L \).
- View \(L \) as initially consisting of \(n \) “pieces.”
- A comparison can join two pieces (without involving \(X \)).
- The total of these comparisons is \(k \).
- We must have at least \(n - k \) pieces.
- A comparison of \(X \) against a piece can reject the whole piece.
- This requires \(n - k \) comparisons.
- The total is still at least \(n \) comparisons.

Average Cost

How many comparisons does linear search do on average?

We must know the probability of occurrence for each possible input.

(Must \(X \) be in \(L \)?)

Ignore everything except the position of \(X \) in \(L \). Why?

What are the \(n + 1 \) events?

\[
P(X \notin L) = 1 - \sum_{i=1}^{n} P(X = L[i]).
\]
Average Cost Equation

Let $k_i = i$ be the number of comparisons when $X = L[i]$. Let $k_0 = n$ be the number of comparisons when $X \notin L$.

Let p_i be the probability that $X = L[i]$. Let p_0 be the probability that $X \notin L[i]$ for any i.

$$f(n) = k_0p_0 + \sum_{i=1}^{n} k_ip_i$$

$$= np_0 + \sum_{i=1}^{n} ip_i$$

What happens to the equation if we assume all p_i's are equal (except p_0)?

Computation

$$f(n) = p_0n + \sum_{i=1}^{n} ip_i$$

$$= p_0n + p\sum_{i=1}^{n} i$$

$$= p_0n + p\frac{n(n+1)}{2}$$

$$= p_0n + p\frac{1 - p_0}{n} \frac{n(n+1)}{2}$$

$$= n + p_0(n-1)$$

Depending on the value of p_0, $\frac{n+1}{2} \leq f(n) \leq n$.

Problems with Average Cost

- Average cost is usually harder to determine than worst cost.
- We really need also to know the variance around the average.
- Our computation is only as good as our knowledge (guess) on distribution.

Sorted List

Change the model: Assume that the elements are in ascending order.

Is linear search still optimal? Why not?

Optimization: Use linear search, but test if the element is greater than X. Why?

Observation: If we look at $L[5]$ and find that X is bigger, then we rule out $L[1]$ to $L[4]$ as well.

More is Better: If we look at $L[n]$ and find that X is bigger, then we know in one test that X is not in L. Great!

- What is wrong here?
Jump Search

Algorithm:
- From the beginning of the array, start making jumps of size \(k \), checking \(L[k] \) then \(L[2k] \), and so on.
- So long as \(X \) is greater, keep jumping by \(k \).
- If \(X \) is less, then use linear search on the last sublist of \(k \) elements.

This is called Jump Search.

What is the right amount to jump?

Analysis of Jump Search

- If \(mk \leq n < (m + 1)k \), then the total cost is at most \(m + k - 1 \) 3-way comparisons.
 \[
 f(n, k) = m + k - 1 = \left\lfloor \frac{n}{k} \right\rfloor + k - 1.
 \]
- What should \(k \) be?
 \[
 \min_{1 \leq k \leq n} \left\{ \left\lfloor \frac{n}{k} \right\rfloor + k - 1 \right\}
 \]
- Take the derivative and solve for \(f'(x) = 0 \) to find the minimum.
- This is a minimum when \(k = \sqrt{n} \).
- What is the worst case cost?
 - Roughly \(2\sqrt{n} \).

Lessons

We want to balance the work done while selecting a sublist with the work done while searching a sublist. In general, make subproblems of equal effort.

This is an example of divide and conquer

What if we extend this to three levels?
- We'd jump to get a sublist, then jump to get a sub-sublist, then do sequential search.
- While it might make sense to do a two-level algorithm (like jump search), it almost never makes sense to do a three-level algorithm.
- Instead, we resort to recursion

Binary Search

```c
int binary(int K, int* array, int left, int right) {
    // Return position of element (if any) with value K
    int l = left-1;
    int r = right+1;  // l and r beyond array bounds
    while (l+1 != r) {  // Stop when l and r meet
        int i = (l+r)/2;  // Middle of remaining subarray
        if (K < array[i]) r = i;  // In left half
        else if (K == array[i]) return i;  // Found it
        else l = i;  // In right half
    }
    return UNSUCCESSFUL;  // Search value not in array
}
```

\[
 f(n) = \begin{cases}
 1 & n = 1 \\
 f(\lfloor n/2 \rfloor) + 1 & n > 1
\end{cases}
\]

m is number of big steps, \(k \) is size of big step.
Lower Bound (for Problem Worst Case)

How does n compare to \sqrt{n} compare to $\log n$?

Can we do better?

Model an algorithm for the problem using a decision tree.
- Consider only comparisons with X.
- Branch depending on the result of comparing X with $L[i]$.
- There must be at least n leaf nodes in the tree. (Why?)
- Some path must be at least $\log n$ deep. (Why?)

Thus, binary search has optimal worst cost under this model.

Average Cost of Binary Search (1)

An estimate given these assumptions:
- X is in L.
- X is equally likely to be in any position.
- $n = 2^k$ for some non-negative integer k.

Cost?
- One chance to hit in one probe.
- Two chances to hit in two probes.
- 2^{k-1} to hit in i probes.
- $i \leq k$.

Average cost is $\log n - 1$.

Average Cost Lower Bound

- Use decision trees again.
- **Total Path Length**: Sum of the level for each node.
- The cost of an outcome is the level of the corresponding node plus 1.
- The average cost of the algorithm is the average cost of the outcomes (total path length / n).
- What is the tree with the least average depth?
- This is equivalent to the tree that corresponds to binary search.
- Thus, binary search is optimal.

Interpolation Search

(Also known as Dictionary Search) Search L at a position that is appropriate to the value of X.

$$p = \frac{X - L[1]}{L[n] - L[1]}$$

Repeat as necessary to recalculate p for future searches.
Quadratic Binary Search

This is easier to analyze:
- Compute p and examine $L[\lfloor pn \rfloor]$.
- If $X < L[\lfloor pn \rfloor]$ then sequentially probe $L[\lfloor pn - i \sqrt{n} \rfloor]$, $i = 1, 2, 3, ...$
 until we reach a value less than or equal to X.
- Similar for $X > L[\lfloor pn \rfloor]$.
- We are now within \sqrt{n} positions of X.
- ASSUME (for now) that this takes a constant number of comparisons.
- Now we have a sublist of size \sqrt{n}.
- Repeat the process recursively.
- What is the cost?

This assumes uniformly distributed data.

Useful fact (Čebyshev’s Inequality):

The probability that we need probe p times is $P_i = \frac{p(1-p) \sqrt{n}}{(i-2)^2}$.

We require at least two probes to set the bounds, so cost is:

$$2 + \sum_{i=3}^{\sqrt{n}} P_i$$

Useful fact (Čebyshev’s Inequality):

The probability that we need probe i times is $P_i = \frac{p(1-p) \sqrt{n}}{(i-2)^2}$.

Since $p(1-p) \leq \frac{1}{4}$.

This assumes uniformly distributed data.
QBS Probe Count (4)

Final result:

\[2 + \sum_{i=3}^{\sqrt{n}} \frac{1}{4(i-2)^2} \approx 2.4112 \]

Is this better than binary search?

What happened to our proof that binary search is optimal?

Comparison (1)

Let's compare \(\log \log n \) to \(\log n \).

<table>
<thead>
<tr>
<th>(n)</th>
<th>(\log n)</th>
<th>(\log \log n)</th>
<th>Diff</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>256</td>
<td>8</td>
<td>3</td>
<td>2.7</td>
</tr>
<tr>
<td>64K</td>
<td>16</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>2^{32}</td>
<td>32</td>
<td>5</td>
<td>6.4</td>
</tr>
</tbody>
</table>

Now look at the actual comparisons used.

- Binary search \(\approx \log n - 1 \)
- Interpolation search \(\approx 2.4 \log \log n \)

Comparison (2)

Not done yet! This is only a count of comparisons!

- Which is more expensive: calculating the midpoint or calculating the interpolation point?

Which algorithm is dependent on good behavior by the input?