Average Cost (cont.)

\[f(n+1) \leq 2 \left(\frac{1 + n + 2}{n+1} \cdot \frac{n + 2}{n+1} \cdot \frac{n+1}{n-1} + \cdots + \frac{n + 2}{n+1} \cdot \frac{1}{2} \right) \]
\[= 2 \left(1 + \frac{n}{n+1} + \cdots + \frac{1}{2} \right) \]
\[= 2 + 2(n+2)(H_{n+1} - 1) \]
\[= \Theta(n \log n). \]

Mergesort

List mergesort(List inlist) {
 if (inlist.length() <= 1) return inlist;;
 List l1 = half of the items from inlist;
 List l2 = other half of the items from inlist;
 return merge(mergesort(l1), mergesort(l2));
}

Mergesort Implementation (1)

Mergesort is tricky to implement.

void mergesort(Elem* A, Elem* temp, int left, int right) {
 int mid = (left+right)/2;
 if (left == right) return; // List of one
 mergesort(A, temp, left, mid); // Sort half
 mergesort(A, temp, mid+1, right); // Sort half
 for (int i=left; i<=right; i++) // Copy to temp
 temp[i] = A[i];
}

Mergesort Implementation (2)

// Do the merge operation back to array
int il = left; int i2 = mid + 1;
for (int curr=left; curr<=right; curr++) {
 if (il == mid+1) // Left list exhausted
 A[curr] = temp[i2++];
 else if (i2 > right) // Right list exhausted
 A[curr] = temp[il++];
 else if (temp[il].key < temp[i2].key)
 A[curr] = temp[il++];
 else A[curr] = temp[i2++];
}

Mergesort cost: \(\Theta(n \log n) \)

Linked lists: Send records to alternating linked lists, mergesort each, then merge.
Heaps

Heap: Complete binary tree with the **Heap Property**:

- Min-heap: all values less than child values.
- Max-heap: all values greater than child values.

The values in a heap are **partially ordered**.

Heap representation: normally the array based complete binary tree representation.

Building the Heap

![Building the Heap](image)

(a) requires exchanges (4-2), (4-1), (2-1), (5-2), (5-4), (6-3), (6-5), (7-5), (7-6).
(b) requires exchanges (5-2), (7-3), (7-1), (6-1).

Siftdown

```cpp
void heap::siftdown(int pos) { // Sift ELEM down
    assert((pos >= 0) && (pos < n));
    while (!isLeaf(pos)) {
        int j = leftchild(pos);
        if ((j<(n-1)) &&
            (Heap[j].key < Heap[j+1].key))
            j++; // j now index of child with > value
        if (Heap[pos].key >= Heap[j].key) return;
        swap(Heap, pos, j);
        pos = j; // Move down
    }
}
```

BuildHeap

For fast heap construction:

- Work from high end of array to low end.
- Call `siftdown` for each item.
- Don't need to call `siftdown` on leaf nodes.

```cpp
void heap::buildheap() { // Heapify contents
    for (int i=n/2-1; i>=0; i--) siftdown(i);
}
```

Cost for heap construction:

\[
\sum_{i=1}^{\log_2 n} \left(\frac{n}{2}\right) \approx n.
\]

This is a Max Heap

How to get a good number of exchanges? By induction. BuildHeap the root's subtrees, then push the root to the correct level.

The intuition for why this cost is \(\Theta(n)\) is important.

Fundamentally, the issue is that nearly all nodes in a tree are close to the bottom, and we are (worst case) pushing all nodes down to the bottom. So most nodes have nowhere to go, leading to low cost.
Heapsort

Heapsort uses a max-heap.

void heapsort(Elem* A, int n) { // Heapsort
 heap H(A, n, n); // Build the heap
 for (int i=0; i<n; i++) { // Now sort
 H.removemax(); // Value placed at end of heap
 }
}

Cost of Heapsort:
Cost of finding k largest elements:

Binsort

A simple, efficient sort:

for (i=0; i<n; i++)
 B[key(A[i])] = A[i];

Ways to generalize:
 • Make each bin the head of a list.
 • Allow more keys than records.

void binsort(ELEM *A, int n) {
 list B[MaxKeyValue];
 for (i=0; i<n; i++) B[key(A[i])].append(A[i]);
 for (i=0; i<MaxKeyValue; i++)
 for (each element in order in B[i])
 output(B[i].currValue());
}

Cost:

Radix Sort

Initial List: 27 91 1 97 17 23 84 28 72 5 67 25

First pass (on right digit):

Second pass (on left digit):

Result of first pass: 91 1 72 23 84 5 25 27 97 17 67 28

Result of second pass: 1 17 5 23 25 27 28 67 72 84 91 97

Radix Sort Algorithm (1)

void radix(Elem* A, Eleme* B, int n, int k, int r,
 int* count) {
 // Count[i] stores number of records in bin[i]

 for (int i=0, rtok=1; i<k; i++, rtok*=r) {
 for (int j=0; j<r; j++) count[j] = 0; // Init

 // Count # of records for each bin this pass
 for (j=0; j<r; j++)
 count[(key(A[j])/rtok)%r]++;

 //Index B: count[j] is index of j's last slot
 for (j=1; j<r; j++)
 count[j] = count[j-1]+count[j];
 }

 for (int i=0; i<n; i++) B[key(A[i])].append(A[i]);
 }

 for (int i=0; i<MaxKeyValue; i++)
 for (each element in order in B[i])
 output(B[i].currValue());
}

Cost of Heapsort: Θ(n log n)
Cost of finding k largest elements: Θ(k log n + n).
 • Time to build heap: Θ(n).
 • Time to remove least element: Θ(log n).

Compare Heapsort to sorting with BST:
 • BST is expensive in space (overhead), potential bad balance,
 BST does not take advantage of having all records available
 in advance.
 • Heap is space efficient, balanced, and building initial heap is
 efficient.

Radix Sort

The simple version only works for a permutation of 0 to n − 1,
but it is truly O(n).
Support duplicates, e.g., larger key spaceCost might look like
Θ(n).
Oops! It is actually, Θ(n * MaxKeyValue).
MaxKeyValue could be O(r^2) or worse.
Radix Sort Example

Sorting Lower Bound

Want to prove a lower bound for all possible sorting algorithms.

Sorting is $O(n \log n)$.

Sorting I/O takes $\Omega(n)$ time.

Will now prove $\Omega(n \log n)$ lower bound.

Form of proof:
- Comparison based sorting can be modeled by a binary tree.
- The tree must have $\Omega(n!)$ leaves.
- The tree must be $\Omega(n \log n)$ levels deep.

Decision Trees

- There are $n!$ permutations, and at least 1 node for each.
- A tree with n nodes has at least $\log n$ levels.
- Where is the worst case in the decision tree?
Lower Bound Analysis

\[\log n! \leq \log n^n = n \log n. \]

\[\log n! \geq \log \left(\frac{n}{2}\right)^{\frac{n}{2}} \geq \frac{1}{2}(n \log n - n). \]

- So, \(\log n! = \Theta(n \log n) \).
- Using the decision tree model, what is the average depth of a node?
- This is also \(\Theta(\log n!) \).

\[\log n = (1 \text{ or } 2). \]