The Entity-Relationship Model Continued

T. M. Murali

September 27, 2010
Roles in Relationships

- Can the same entity set appear more than once in the same relationship?
Can the same entity set appear more than once in the same relationship?

Prerequisite relationship between two Courses

Which course is the pre-requisite?
Roles in Relationships

- Which course is the pre-requisite?
- Label the lines connecting entity to relationship with the role of the entity.
Parallel Relationships

- Can there be more than one relationship between the same pair of entities?
Can there be more than one relationship between the same pair of entities?

TA and Take relationship between Students and Classes
Are Attributes on Relationships Needed?

We can convert the attribute to an entity and make the relationship multiway.
Are Attributes on Relationships Needed?

We can convert the attribute to an entity and make the relationship multiway.
Multiway Relationships

- Relationships may connect more than two entity sets.
- Consider scenario two in the handout: \(\geq 1 \) professor can teach a course but each student evaluates each professor separately.
Multiway Relationships

- Relationships may connect more than two entity sets.
- Consider scenario two in the handout: ≥ 1 professor can teach a course but each student evaluates each professor separately.
- Three-way *Evaluation* relationship between *Students*, *Professors*, and *Classes*.

<table>
<thead>
<tr>
<th>Students</th>
<th>Evaluation</th>
<th>Courses</th>
<th>Professors</th>
</tr>
</thead>
</table>

T. M. Murali September 27, 2010 CS 4604: E/R model
Another Multiway Relationship

- Consider scenario three in the handout: ≥ 1 professor can teach a course but each student taught by at most one professor, and each student only evaluates that professor.
Another Multiway Relationship

- Consider scenario three in the handout: \(\geq 1 \) professor can teach a course but each student taught by at most one professor, and each student only evaluates that professor.

- Add arrow directed towards *Professors*.
Multiplicity in Multiway Relationships

- An arrow pointing to an entity set $E \rightarrow$ if we select an entity from each of the other entity sets, the selected entities are related to at most one entity in E.

![Diagram](image_url)
Multiplicity in Multiway Relationships

- An arrow pointing to an entity set $E \Rightarrow$ if we select an entity from each of the other entity sets, the selected entities are related to at most one entity in E.

```
<table>
<thead>
<tr>
<th>Student</th>
<th>Course</th>
<th>Professor</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hermione Grainger</td>
<td>Potions</td>
<td>Snape</td>
<td>F-</td>
</tr>
<tr>
<td>Draco Malfoy</td>
<td>Potions</td>
<td>Snape</td>
<td>A*</td>
</tr>
<tr>
<td>Harry Potter</td>
<td>Potions</td>
<td>Lupin</td>
<td>A+</td>
</tr>
<tr>
<td>Ron Weasley</td>
<td>Potions</td>
<td>Lupin</td>
<td>B+</td>
</tr>
</tbody>
</table>
```

- E/R diagram forbids connections between “Hermione Grainger,” “Potions” and two different professors.
It is easy to convert a multiway relationship to multiple binary relationships.

- Create a new connecting entity set. Think of its entities as the tuples in the relationship set for the multiway relationship.
- Introduce relationships from the connecting entity set to each of the entities in the original relationship.
- If an entity set plays > 1 role, create a relationship for each role.
Converting Multiway Relationships to Binary

It is easy to convert a multiway relationship to multiple binary relationships.

1. Create a new connecting entity set. Think of its entities as the tuples in the relationship set for the multiway relationship.
2. Introduce relationships from the connecting entity set to each of the entities in the original relationship.
3. If an entity set plays \(\geq 1 \) role, create a relationship for each role.

What is the multiplicity of each of the new relationships?
Example of the Conversion

Instance of *Evaluation* (ternary) relationship before conversion:

<table>
<thead>
<tr>
<th>Student</th>
<th>Course</th>
<th>Professor</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hermione Grainger</td>
<td>Potions</td>
<td>Snape</td>
<td>F-</td>
</tr>
<tr>
<td>Draco Malfoy</td>
<td>Potions</td>
<td>Snape</td>
<td>A*</td>
</tr>
<tr>
<td>Harry Potter</td>
<td>Potions</td>
<td>Lupin</td>
<td>A+</td>
</tr>
<tr>
<td>Ron Weasley</td>
<td>Potions</td>
<td>Lupin</td>
<td>B+</td>
</tr>
</tbody>
</table>

Evaluation entity set after conversion:

<table>
<thead>
<tr>
<th>Eval_Id</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>e1</td>
<td>F-</td>
</tr>
<tr>
<td>e2</td>
<td>A*</td>
</tr>
<tr>
<td>e3</td>
<td>A+</td>
</tr>
<tr>
<td>e4</td>
<td>B+</td>
</tr>
</tbody>
</table>

Student_of entity set after conversion:

<table>
<thead>
<tr>
<th>Eval_Id</th>
<th>Student</th>
</tr>
</thead>
<tbody>
<tr>
<td>e1</td>
<td>Hermione Grainger</td>
</tr>
<tr>
<td>e2</td>
<td>Draco Malfoy</td>
</tr>
<tr>
<td>e3</td>
<td>Harry Potter</td>
</tr>
<tr>
<td>e4</td>
<td>Ron Weasley</td>
</tr>
</tbody>
</table>
Details of the Conversion

- Create an entity in the new *Evaluation* entity set for each instance (row) in the ternary *Evaluation* relationship.
- In the *Student_of* relationship, relate each entity in the *Evaluation* entity set with the corresponding student entity.
- How many students can the *Student_of* relationship relate an *Evaluation* entity to?

Only one!
Details of the Conversion

- Create an entity in the new Evaluation entity set for each instance (row) in the ternary Evaluation relationship.
- In the Student_of relationship, relate each entity in the Evaluation entity set with the corresponding student entity.
- How many students can the Student_of relationship relate an Evaluation entity to? Only one!
- Therefore, the multiplicity of Student_of is many-to-one from Evaluation to Student.
A *subclass* of an entity set E is an entity set F such that

- each entity in F is an entity in E.
- the entity set F must have at least one attribute or participate in at least one relationship that E does not.

Connect E to F using an *isa* relationship denoted by a triangle.
Convention is to draw E above F.
Each *isa* relationship is one-one but we do not draw the arrows.
The set of *isa* relationships must form a tree.
Example of Subclasses

- University Employees, Handout 2.
Example of Subclasses

- University Students, Handout 2 (ignore underlines, double shapes).
E/R vs. OO Subclasses

- In object-oriented programming languages, each object is in only one class.
 - A subclass inherits variables and methods from the superclasses.
- In an E/R diagram, an entity has *components* in all the subclasses to which it belongs.
 - If an entity e has a component in an subclass, then e has a component in the superclass.
 - Does e have a component in the root?
 - The attributes of e are the union of the attributes of its components.
 - e participates in all the relationships its components participate in.
Prof. Fingers InMany Pies has a 9-month appointment, teaches in one semester every year, and does not teach in the other semester. In the other semester, his research grant pays his salary. Which entity sets does he have components in? (using a different isa hierarchy)
Components of an Entity

- How do we represent students enrolled in combined Bachelors-Masters programmes?
Components of an Entity

- How do we represent students enrolled in combined Bachelors-Masters programmes?
- Such a student has components in multiple entity sets.

```
Components of a Student:
- ID
- Name
- UTA_for
- GTA_for
- Undergraduates
- Graduates
- Thesis_title_MS
- Thesis_title_PhD
- Masters
- PhDs
```