Internet Protocol Suite

Srinidhi Varadarajan
Internet Protocol Suite: Transport

- **TCP: Transmission Control Protocol**
 - Byte stream transfer
 - Reliable, connection-oriented service
 - Point-to-point (one-to-one) service only

- **UDP: User Datagram Protocol**
 - Unreliable (“best effort”) datagram service
 - Point-to-point, multicast (one-to-many), and broadcast (one-to-all)
Internet Protocol Suite: Network

- **IP: Internet Protocol**
 - Unreliable service
 - Performs routing
 - Supported by routing protocols,
 - e.g. RIP, IS-IS,
 - OSPF, IGP, and BGP

- **ICMP: Internet Control Message Protocol**
 - Used by IP (primarily) to exchange error and control messages with other nodes

- **IGMP: Internet Group Management Protocol**
 - Used for controlling multicast (one-to-many transmission) for UDP datagrams
Internet Protocol Suite: Data Link

- **ARP**: Address Resolution Protocol
 - Translates from an IP (network) address to a network interface (hardware) address, e.g. IP address-to-Ethernet address or IP address-to-FDDI address

- **RARP**: Reverse Address Resolution Protocol
 - Translates from a network interface (hardware) address to an IP (network) address
Address Resolution Protocol (ARP)

- Maps IP addresses to Ethernet Addresses
- ARP responses are cached
Internetworking

- **Motivation**
 - Heterogeneity
 - Scale

- IP is the glue that connects heterogeneous networks giving the illusion of a homogenous one.

- **Salient Features**
 - Best Effort Service Model
 - Global Addressing Scheme
Internet Protocol: IP

- The Internet Protocol (IP) delivers datagrams across networks through routers
- IP provides unreliable datagram service
 - Datagrams (packets) may or may not be delivered
 - Datagrams may arrive at destination out of order
 - Datagrams may be arbitrarily delayed
- Datagram service is not demanding on the underlying network, thus allowing just about any network to join the Internet
Internet Protocol: IP

- Two transport services are commonly built on top of IP
 - Transmission Control Protocol (TCP)
 - User Datagram Protocol (UDP)
 - Other transport protocols may also use IP, e.g. the Real Time Transport Protocol (RTP, RTSP)

- IP functions:
 - Route datagrams through the Internet
 - Provide Internet-wide addressing
 - Fragment datagrams, as needed for underlying network

- Currently version: IPv4. IPv6 is “next generation” IP
Global IP Addresses

- **Properties**
 - globally unique
 - hierarchical: network + host

- **Dot Notation**
 - 10.3.2.4
 - 128.96.33.81
 - 192.12.69.77
Internet Addressing

- Example: IP address for abc.xyz.net
 - 10000000 10101101 01011100 01100000
 - 128.173.92.96
 - netmask: 255.255.0.0
 - network: 128.173.0.0
 - hostid: 92.96
Internet Addressing

- Special addresses used for broadcasting
 - Directed broadcast: network (or subnet) plus hostid that is all 1’s
 - Limited broadcast: all 1’s (network and hostid)

- Example: broadcasting for abc.xyz.net
 - Directed broadcast (using subnet): 128.173.255.255
 - Limited broadcast: 255.255.255.255

- The Address Resolution Protocol (ARP) provides a translation between an IP address and an appropriate local network address (e.g. Ethernet physical address)
IP Datagrams

- IP datagrams include
 - Header, minimum size of 20 bytes
 - Data

- Data size
 - Less than or equal to minimum transport unit (MTU) of the underlying network

- Fragmentation
 - Packets may need to be fragmented at intermediate nodes if packet is too big for an intermediate network
 - Path MTU less than link MTU at sender
 - Receiver reassembles fragments to form entire IP packet
IP Datagram Format

<table>
<thead>
<tr>
<th>0</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>19</th>
<th>31</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version</td>
<td>HLen</td>
<td>TOS</td>
<td>Length</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ident</td>
<td>Flags</td>
<td>Offset</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TTL</td>
<td>Protocol</td>
<td>Checksum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SourceAddr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DestinationAddr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Options (variable)</td>
<td>Pad (variable)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
IP Header Fields

- **Identification**: unique datagram identifier
- **Total Length**: length of this datagram + header, in bytes
 - Hosts are required to accept datagrams up to 576 bytes
 - Many applications (e.g. NFS) accept up to 8,192 bytes
 - Datagram may be fragmented
- **Internet Header Length**: length of header in 32-bit words
IP Header Fields

- **Fragment Offset**: offset of fragment in this datagram in 8-byte units
- **Flags**: indicate
 - If this is last fragment, and
 - If datagram should not be fragmented
- **Time To Live**: maximum number of routers through which the datagram may pass
 - Decremented at each router
 - Used to prevent looping in the network
 - Also used to limit scope of multicast datagrams
IP Header Fields

- **Protocol**: identifies higher level protocol that provided data
- **Version**: IP version identifier (currently 4)
- **Type of Service**:
 - Precedence field (ignored)
 - Type of service (TOS) -- maximize throughput, minimize delay, maximize reliability, minimize cost (no guarantees, though)
- **Header Checksum**: checksum over header (protects addresses, lengths, etc.)
 - 16-bit one’s complement sum
IP Header Fields

- **Source IP Address**: full address of source node
- **Destination IP Address**: full address of destination node
- **Options** (rarely used, may not be supported by routers):
 - Security and handling restrictions
 - Record route
 - Loose source routing
 - Strict source routing