Introduction
- Client identification and cookies
- Basic Authentication
- Digest Authentication
- Secure HTTP

Client Identification and Cookies (1)
- HTTP Headers
- Client IP address
- User login
- Fat URLs
- Cookies

Client Identification and Cookies (2)
- HTTP Headers
- From
- User-Agent
- Referer
- Authorization

Client Identification and Cookies (3)
- Early servers used IP address to identify client
- Problems
 - Identifies computer, not user
 - Dynamic IP addresses
 - Network Address Translation firewalls
 - Use of proxies
 - User login, covered in basic authentication

Client Identification and Cookies (4)
- Fat URLs are URLs that are generated by the server, specific to each user
- Problems include
 - Ugly URLs
 - Can’t share them
 - Breaks caching
 - Extra server load
 - Escape hatches
 - Not persistent across sessions
Client Identification and Cookies (5)

- Cookies are of two types
 - Session cookies
 - Persistent cookies

Basic Authentication (1)

- Request
- Challenge
 - HTTP Header: WWW-Authenticate
- Authorization
 - HTTP Header: Authorization
- Success
 - HTTP Header: Authentication-Info

Basic Authentication (2)

- Base-64 Encoding is used to encode Username/Password
 - Client sends encoded username/password with Authorization header, separated by :
 - Proxy Authentication is used when a proxy is used instead of the server
 - Proxy headers are used instead of server headers

Problems With Basic Authentication

1. Easy to decode username/password (u/p)
2. Even if encoding scheme was complicated, it's easy for 3rd party to capture u/p and replay it
3. Social engineering problems
4. No protection against proxies and intermediaries
5. Vulnerable to spoofing by counterfeit servers

Digest Authentication

- Never send password over the network
- Instead send a digest of the password
 - Popular digest algorithms include MD5 and SHA

Secure HTTP

- Digital Cryptography
 - Ciphers
 - Keys
 - Symmetric-key cryptosystems
 - Asymmetric-key cryptosystems
 - Public-key cryptography
 - Digital signatures
 - Digital certificates
Basics of Cryptography

- Encryption key: K_E
- Decryption key: K_D
- Plaintext in: P
- Ciphertext: $C = E(P, K_E)$
- Decryption: $P = D(C, K_D)$

Relationship between the plaintext and the ciphertext

Secret-Key Cryptography

- Monoalphabetic substitution
 - each letter replaced by different letter
- Given the encryption key,
 - easy to find decryption key
- Secret-key crypto called symmetric-key crypto

Public-Key Cryptography

- All users pick a public key/private key pair
 - publish the public key
 - private key not published
- Public key is the encryption key
 - private key is the decryption key

One-Way Functions

- Function such that given formula for $f(x)$
 - easy to evaluate $y = f(x)$
 - But given y
 - computationally infeasible to find x

Digital Signatures

- Computing a signature block
- What the receiver gets

Digital Certificates

- Certificates contain information about
 - Name and hostname of website
 - Public key of the website
 - Name of the signing authority
 - Expiration date
 - Validity period
 - Signature from the signing authority
 - …
Secure HTTP

- HTTPS: The details
 - Most popular secure version of HTTP
 - It is widely implemented and available in all major browsers and servers
 - Provides a powerful set of symmetric, asymmetric and certificate-based cryptographic techniques

- Secure HTTP

 - Instead of sending HTTP messages over unencrypted transport layer, send them over secure transport layer
 - The transport layer is SSL or TSL
 - Steps in using HTTPS
 - Client prefixes request with https
 - Connection is made to port 443
 - All information is encrypted
 - Binary protocol

Secure HTTP

- Client and Server need to do SSL handshake
 - Exchange protocol version numbers
 - Select a cipher that each side knows
 - Authenticate the identity of each side
 - Generate temporary session keys to encrypt the channel