Parallel ("Batcher") Sorting

1. Shuffle-exchange interconnection topology
 - $n = 2^k$ processors
 - Each processor has a k bit address $a_1 \cdots a_k$
 - The exchange connection: connect $a_1 \cdots a_k$ to $a_1 \cdots \bar{a}_k$.
 - The shuffle connection: connect $a_1 \cdots a_k$ to $a_2 \cdots a_k a_1$.

 - Picture:

2. Batcher sort (1968)
 - Definition: a sequence x_0, \ldots, x_{n-1} is \textit{bitonic} if \exists index j s.t. x_0, \ldots, x_j is increasing and x_{j+1}, \ldots, x_{n-1} is decreasing, or a cyclic shift generates such a sequence.
• Key observation: if \(x_0, \ldots, x_{n-1} \) is bitonic and if
\[
\begin{align*}
y_i & \equiv \min(x_i, x_{i+n/2}) \\
z_i & \equiv \max(x_i, x_{i+n/2})
\end{align*}
\]
for \(i = 0, \ldots, n/2 - 1 \), then the sequences \(y \) and \(z \) are bitonic, and \(y_i < z_j \) for all \(i, j \).

• We can repeat this recursively.
• A bitonic sorter.

• Why does this work?
 \begin{itemize}
 \item At first stage, compare numbers in PE \(0a_2 \cdots a_k \) and \(1a_2 \cdots a_k \). But
 \[
 \begin{align*}
 Sh(0a_2 \cdots a_k) &= a_2 \cdots a_k 0 \\
 Sh(1a_2 \cdots a_k) &= a_2 \cdots a_k 1
 \end{align*}
 \]
 \item So after the first exchange, the small numbers (\(y \)'s) are in PEs \(a_2 \cdots a_k 0 \), and large numbers (\(z \)'s) are in PEs \(a_2 \cdots a_k 1 \).
 \item Now we need to compare numbers in PE \(0a_3 \cdots a_k 0 \) and \(1a_3 \cdots a_k 0 \). But
 \[
 \begin{align*}
 Sh(0a_3 \cdots a_k 0) &= a_3 \cdots a_k 00 \\
 Sh(1a_3 \cdots a_k 0) &= a_2 \cdots a_k 01
 \end{align*}
 \]
 and similarly
 \[
 \begin{align*}
 Sh(0a_3 \cdots a_k 1) &= a_3 \cdots a_k 10 \\
 Sh(1a_3 \cdots a_k 1) &= a_2 \cdots a_k 11
 \end{align*}
 \]
 \end{itemize}
– After \(k - 1 \) stages:
 PEs \(a_k0\cdots0 \) have smallest 2 \(x \)'s
 PEs \(a_k0\cdots1 \) have next smallest 2 \(x \)'s
 :
 PEs \(a_k1\cdots1 \) have largest 2 \(x \)'s
– So one more shuffle and one more exchange will sort the list.

• Combining bitonic sorters to do sorting of completely unsorted data.
 – Idea:
 * unsorted list is \(n/2 \) bitonic sequences of length 2.
 * merge to get \(n/4 \) bitonic sequences of length 4, etc.
 * every other sequence must be decreasing.
 – Picture

– Time complexity: \(O(\log^2(n)) \)