Formal Definition of Turing Machine

A (standard) Turing machine (TM) is a 5-tuple \(M = (Q, \Sigma, \Gamma, \delta, q_0) \) where

- \(Q \) is a finite set of states;
- \(\Sigma \) is the input alphabet;
- \(\Gamma \) is the tape alphabet;
- the partial function
 \[
 \delta : Q \times \Gamma \to Q \times \Gamma \times \{L, R\}
 \]
 is the transition function; and
- \(q_0 \in Q \) is the start state.

There is an element \(B \in \Gamma \) called blank. We require \(\Sigma \subset \Gamma \setminus \{B\} \).
The Model

A typical mental model for a Turing machine looks like this:

A Turing machine terminates abnormally whenever a computation tries to move left from the leftmost tape square.
Example

Let M_1 be the Turing machine given by:

$$M_1 = (Q_1, \Sigma_1, \Gamma_1, \delta_1, q_0)$$

$$Q_1 = \{q_0, q_1, q_2\}$$

$$\Sigma_1 = \{a\}$$

$$\Gamma_1 = \{a, B\}$$

The transition function

$$\delta : Q_1 \times \Gamma_1 \rightarrow Q_1 \times \Gamma_1 \times \{L, R\}$$

is given by this table:

<table>
<thead>
<tr>
<th>q</th>
<th>$\delta_1(q, a)$</th>
<th>$\delta_1(q, B)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_0</td>
<td>undefined</td>
<td>(q_1, B, R)</td>
</tr>
<tr>
<td>q_1</td>
<td>(q_1, a, R)</td>
<td>(q_2, B, L)</td>
</tr>
<tr>
<td>q_2</td>
<td>(q_2, B, L)</td>
<td>undefined</td>
</tr>
</tbody>
</table>

Try the model on input aaa.
Configurations

A configuration of M is an element of

$$\Gamma^*Q(\{B\} \cup \Gamma^*(\Gamma - \{B\}))$$.

For example, TM M_1 has the configuration

$$Baaq_1a$$

which means

- The contents of the tape are $Baaa$ followed by an infinite sequence of B’s;
- The TM is in state q_1; and
- The tape head is pointing to the fourth tape square (the one to the right of the state).

For an input $w \in \Sigma^*$, the initial or start configuration is

$$q_0Bw.$$
Yields Relation

The yields (in one step) relation \vdash_M is a binary relation on well-formed configurations.

Right Moves.

$$\delta(q_i, \sigma) = (q_j, \tau, R)$$

If $v = \lambda$, then

$$uq_i\sigma v \vdash_M u\tau q_j B;$$

otherwise,

$$uq_i\sigma v \vdash_M u\tau q_j v.$$

Left Moves.

$$\delta(q_i, \sigma) = (q_j, \tau, L)$$

If $u \neq \lambda$, then $u = x\gamma$ and

$$uq_i\sigma v \vdash_M xq_j\gamma\tau v.$$
Example

The previous example M_1 has state diagram

For input $w = aaaa$, the initial configuration is q_0Baaa.

The complete computation is

$q_0Baaa \vdash Bq_1aaa \vdash Baq_1aa$
$\vdash Baaq_1a \vdash Baaaq_1B$
$\vdash Baaq_2a \vdash Baq_2a$
$\vdash Bq_2a \vdash q_2B$.

As there is no other configuration that follows q_2B, the Turing machine halts.
Yields in \(t \) Steps

As usual, we have the notion of **yields in \(t \) steps**:

\[
wq_i x \xrightarrow{t} M yq_j z.
\]

Yields in Zero or More Steps

Taking the union of all these relations, we get **yields (in zero or more steps)**:

\[
wq_i x \xrightarrow{*} M yq_j z
\]

holds if and only if there exists a \(t \geq 0 \) such that

\[
wq_i x \xrightarrow{t} M yq_j z.
\]
Exercise

Design a Turing machine M_2 that copies its input. In particular, the effect of M_2 on input u should be

\[q_0 Bu \xrightarrow{*} M \quad q_j BuBu, \]

where $q_j \neq q_0$ is some designated finishing state.

Assume that $\Sigma = \{0, 1\}$.
Acceptance by Halting

A string $w \in \Sigma^*$ is accepted by halting by the Turing machine M if the computation by M on input w eventually halts (not terminates abnormally).
Acceptance by Final State

A Turing machine with final states is a 6-tuple $M = (Q, \Sigma, \Gamma, \delta, q_0, F)$, a standard Turing machine augmented with a set $F \subseteq Q$ of final states.

A string $w \in \Sigma^*$ is accepted by final state by the Turing machine M if the computation by M on input w eventually halts in a final state.

The language $L(M)$ accepted by the Turing machine M is the set of all strings accepted by M (by final state).

The class of languages accepted by some TM is the class of recursively enumerable languages.
Example

Design a TM M_3 with final states that accepts the language

$$L_3 = \{ww \mid w \in \{0, 1\}^*\}.$$
Exercise

Design a Turing machine M_4 that accepts the following language:

$$L_4 = \{w \in \{a, b\}^* \mid n_a(w) = n_b(w)\}$$

Use acceptance by final state or by halting, as you like.
Equivalence of Definitions of Acceptance

Theorem 9.3.2. A language L is accepted by halting if and only if L is accepted by final state.

Proof:

First suppose that $M = (Q, \Sigma, \Gamma, \delta, q_0)$ accepts L by halting. Then $M' = (Q, \Sigma, \Gamma, \delta, q_0, Q)$ accepts L by final state.
Proof Continued

Now suppose that $M = (Q, \Sigma, \Gamma, \delta, q_0, F)$ accepts L by final state. Define a new, standard Turing machine $M' = (Q \cup \{q_R\}, \Sigma, \Gamma, \delta', q_0)$ as follows:

- Whenever $\delta(q, x)$ is defined, define $\delta'(q, x) = \delta(q, x)$.
- If $q \in Q - F$ and $\delta(q, x)$ is undefined, define $\delta'(q, x) = (q_R, x, R)$.
- For all $x \in \Gamma$, define $\delta'(q_R, x) = (q_R, x, R)$.

Think of q_R as a reject state. Whenever M would halt in a non-final state, M' goes to state q_R and moves right forever. Hence M accepts by final state if and only if M' halts.
Variations

- A **multitrack Turing machine** has \(k \) tracks on one tape. The tape head can read or write a \(k \)-tuple \((\sigma_1, \sigma_2, \ldots, \sigma_k) \in \Gamma^k\).

- A **multitape Turing machine** has \(k \) tapes, each with a read/write head that moves independently.

- A **Turing machine with a two-way tape** has a tape that extends infinitely in two directions.
Example

Design a Turing machine with two tapes to accept the language of palindromes:

\[L_5 = \{ w \in \{0, 1\}^* \mid w = w^R \}. \]

You may use moves \(L, R, \) and \(S \) (stationary) for each of the two heads.
Equivalence of Variations

Theorem 9.4.1. A language L is accepted by a multitrack Turing machine if and only if L is accepted by a standard Turing machine.

Theorem 9.6.1. A language L is accepted by a multitape Turing machine if and only if L is accepted by a standard Turing machine.

Theorem 9.5.1. A language L is accepted by a Turing machine with a two-way tape if and only if L is accepted by a standard Turing machine.
Nondeterministic Turing Machine

A Nondeterministic Turing machine (NTM) is a 6-tuple $M = (Q, \Sigma, \Gamma, \delta, q_0, F)$ where everything is defined as for a TM with final states except the transition function maps as follows:

$$\delta : Q \times \Gamma \rightarrow \mathcal{P}(Q \times \Gamma \times \{L, R\}).$$

A string $w \in \Sigma^*$ is **accepted** by M if

$$q_0 Bw \overset{*}{\xrightarrow{M}} \alpha q_i \beta,$$

where $\alpha q_i \beta$ is a halting configuration and $q_i \in F$.

In particular, if there is some computation of M on input w that halts in a final state, then M accepts w.
An Example Where Nondeterminism Helps

Design a Turing machine to accept this language discussed earlier:

\[L_3 = \{ww \mid w \in \{0, 1\}^*\}. \]
The Power of Nondeterminism

Theorem. If L is accepted by a nondeterministic Turing machine, then L is accepted by a standard Turing machine.

Proof: Start with a NTM M and input w. The computation of M on w defines a computation tree where each node is a configuration. The initial configuration q_0Bw is at the root.

Design a standard (deterministic) Turing machine M' that traverses the configuration tree in a breadth-first manner and accepts if it ever finds a halting configuration of M containing a final state.
Church’s Thesis

Any language that can be accepted by any model of computation can be accepted by a standard Turing machine.

Anything that can be computed can be computed by a standard Turing machine.
Enumerating a Language

Let M be a Turing machine with a special state q_{enum}. M **enumerates** a string $w \in \Sigma^*$ if

$$q_0 B \quad \vdash^*_{M} \quad q_{enum} B w B u.$$

Think of the configuration $q_{enum} B w B u$ as specifying “print w.”

M **enumerates** the language L if

$$L = \{ w \in \Sigma^* \mid M \text{ enumerates } w \}.$$
Example

Design a Turing machine to enumerate the language

\[L_6 = \left\{ 0^{2^i} \mid i \geq 0 \right\} \]

\[= \{0, 00, 0000, 00000000, \ldots\}. \]
Recursive Enumeration

Theorem. L is recursively enumerable if and only if L is enumerated by some Turing machine.

Proof: First suppose that L is enumerated by some TM $M = (Q, \Sigma, \Gamma, \delta, q_0)$. Then construct a TM M' that works as follows:

- Start in configuration q'_0Bw. Replace the second blank with a $\$$, arriving at configuration Bwq_0B$.

- Run M, interrupting whenever M enters q_{enum}. During the interrupt, check the enumerated string against w. If there is a match, then M' accepts w by halting.

Argue that M' accepts L.
Now suppose that TM M accepts L. Construct a TM M' to enumerate L. Conceptually M' works as follows:

- M' is able to list the elements of Σ^* in length lexicographic order. For $\Sigma = \{0, 1\}$, the order is $\lambda, 0, 1, 00, 01, 10, 11, \ldots$.

- Imagine a table reporting results of computations of M:

<table>
<thead>
<tr>
<th>S</th>
<th>λ</th>
<th>0</th>
<th>1</th>
<th>00</th>
<th>01</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>...</td>
</tr>
<tr>
<td>e</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>...</td>
</tr>
<tr>
<td>p</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>...</td>
</tr>
<tr>
<td>s</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>...</td>
</tr>
</tbody>
</table>

M' need only visit every table entry, by simulating M in a dovetailed fashion, to find every “yes.” At each “yes,” M' enumerates the corresponding string.