Showing Languages are Regular or Not Regular

Two main techniques:

- **Pumping Lemma.** Used to show that a language is **not** regular.

- **Myhill-Nerode Theorem.**
 - Used to classify a language as regular or non-regular.
 - Also used to construct minimum state DFAs.
What is Pumping?

- For the regular expression \(r = (a \cup b)(abb)^*(bba \cup bbb) \), the string \(w = babbbbbb \) pumps because we may decompose \(w \) into three substrings \(w = b \cdot abb \cdot bbb \) such that \(b(abb)^ibbb \) is represented by \(r \), for every \(i \geq 0 \).

- In this DFA

![DFA Diagram]

the string \(aaababa = aa \cdot aba \cdot b \) pumps because of the cycle that the \(aba \) follows.
Pumping Lemma (Theorem 7.6.3).
Suppose that \(L \) is a regular language. Then there exists an integer \(k \) such that for all strings \(z \in L \) satisfying \(|z| \geq k \), we can write \(z = uvw \) where

1. \(|v| \geq 1 \);

2. \(|uv| \leq k \); and

3. \(uv^iw \in L \), for all \(i \geq 0 \).
Proof of the Pumping Lemma. Let M be a DFA accepting L. Let k be the number of states in M. Let z be any string in L satisfying $|z| \geq k$. Consider the accepting computation for z

\[(q_0, z) \xrightarrow{\ast} (q_f, \lambda),\]

where q_f is a final state. This computation contains $|z| + 1 > k$ distinct configurations. Hence some state is repeated in these configurations (Pigeonhole Principle). Choose q_j to be the state that is repeated the earliest and write that earliest repetition as follows:

\[(q_0, uvw) \xrightarrow{\ast} (q_j, vw) \xrightarrow{\dagger} (q_j, w) \xrightarrow{\ast} (q_f, \lambda).\]

Then (1) $|v| \geq 1$; (2) $|uv| \leq k$; and (3) $uv^i w \in L$, for all $i \geq 0$.

Proving a Language is Not Regular

The logical structure of the Pumping Lemma is as follows:

\[p \Rightarrow q \]

\[L \text{ is regular } \Rightarrow \exists k \ \forall z \ (z \in L \land |z| \geq k) \Rightarrow \]

\[\exists u, v, w \ (z = uvw \land \]

\[|v| \geq 1 \land |uv| \leq k \land \]

\[(\forall i \geq 0 \ uv^i w \in L) \].

Hence, showing \(\neg q \) suffices to show \(L \) is not regular. What is \(\neg q \)?

\[\neg q = \forall k \ \exists z \ (z \in L \land |z| \geq k \land \]

\[\forall u, v, w \ (z \neq uvw \lor \]

\[|v| = 0 \lor |uv| > k \lor \]

\[(\exists i \geq 0 \ uv^i w \notin L) \].
Proof Strategy

- Start with a language \(L \) that you want to show is not regular.

- Let \(k \) be an arbitrary positive integer.

- Choose \(z \in L \) such that \(|z| \geq k \) and \(z \) does not pump. (This is the creative part.) Note that \(z \) is a function of \(k \).

- Show that for any decomposition \(z = uvw \) with \(|v| \geq 1 \) and \(|uv| \leq k \), there exists an \(i \geq 0 \) such that \(uv^i w \not\in L \).

The argument is often presented as a proof by contradiction, but this is completely unnecessary.
EXAMPLE.

The language

\[L_1 = \{a^n b^n \mid n \geq 0\} \]

is not regular.

Proof: Let \(k > 0 \) be arbitrary. Let \(z = a^k b^k \).
Then \(z \in L_1 \) and \(|z| \geq k \).

Let \(z = uvw \) be any decomposition of \(z \)
satisfying \(|v| \geq 1 \) and \(|uv| \leq k \). Then \(u = a^r \)
and \(v = a^s \), where \(0 \leq r \) and \(1 \leq s \leq k \). Then
\(uv^2w = a^{k+s} b^k \notin L_1 \).

As \(L_1 \) does not satisfy the conclusion of the
Pumping Lemma, it cannot be regular.
EXAMPLE.

The language of palindromes

\[L_2 = \{ w \in \{0, 1\} | w^R = w \} \]

is not regular.

Proof: Let \(k > 0 \) be arbitrary. Let \(z = 0^k 10^k \).
Then \(z \in L_2 \) and \(|z| \geq k \).

Let \(z = uvw \) be any decomposition of \(z \)
satisfying \(|v| \geq 1 \) and \(|uv| \leq k \). Then \(u = 0^r \)
and \(v = 0^s \), where \(0 \leq r \) and \(1 \leq s \leq k \). Then
\(uv^2w = 0^{k+s}10^k \notin L_2 \).

As \(L_2 \) does not satisfy the conclusion of the
Pumping Lemma, it cannot be regular.
A Tricky Example

Show that the language

\[L_3 = \{ w \in \{0, 1\}^* \mid n_0(w) \neq n_1(w) \} \]

is not regular.
Corollary 7.6.5. Let M be a DFA. Then there is an algorithm to determine whether

1 $L(M)$ is empty.
2 $L(M)$ is finite.
3 $L(M)$ is infinite.

Corollary 7.6.6. Let M_1 and M_2 be DFAs. Then there is an algorithm to determine whether $L(M_1) = L(M_2)$.

Proof: Equivalent to determining whether

$$(L(M_1) \cap \overline{L(M_2)}) \cup (\overline{L(M_1)} \cap L(M_2)) = \emptyset.$$
Partitioning Reviewed

Start with a DFA $M = (Q, \Sigma, \delta, q_0, F)$.

Suppose that $Q = \{q_0, q_1, \ldots, q_{n-1}\}$.

For each state q_i, define the associated language

$$L_{q_i} = \{w \in \Sigma^* \mid \tilde{\delta}(q_0, w) = q_i\}.$$

Then

$$L_{q_0}, L_{q_1}, \ldots, L_{q_{n-1}}$$

is a partition of Σ^*.
Example of Partitioning

Consider the DFA
\[M_1 = (\{q_0, q_1, q_2, q_3\}, \{a, b\}, \delta_1, q_0, \{q_2\}) \] :

The partition generated by \(M_1 \) is
\[
L_{q_0} = b^* \\
L_{q_1} = b^*ab^* \\
L_{q_2} = b^*ab^*ab^* \\
L_{q_3} = b^*ab^*ab^*a(a \cup b)^*
\]

The corresponding equivalence relation on \((a \cup b)^*\) is as follows:

For two strings \(u, v \in (a \cup b)^* \), we have
\(u \equiv_{M_1} v \) if and only if \(\tilde{\delta}_1(q_0, u) = \tilde{\delta}_1(q_0, v) \).
Example of Partitioning
(Continued)

The language accepted by M_1 is

$$L_1 = L_{q_2} = b^*ab^*ab^*.$$
Right-Invariance

Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA. Strings $u, v \in \Sigma^*$ are indistinguishable by M if $\tilde{\delta}(q_0, u) = \tilde{\delta}(q_0, v)$. This is written $u \equiv_M v$.

Lemma 1. The relation \equiv_M is an equivalence relation.

An equivalence relation \equiv on Σ^* is right-invariant if $u \equiv v$ implies $uw \equiv vw$ for all $w \in \Sigma^*$.

Lemma 2. The relation \equiv_M is right-invariant.
Another Equivalence Relation

Let \(L \subseteq \Sigma^* \) be a language. Strings \(u, v \in \Sigma^* \) are indistinguishable by \(L \) if, for every \(w \in \Sigma^* \), either \(uw, vw \in L \) or \(uw, vw \notin L \). This is written \(u \equiv_L v \).

EXAMPLE. Let

\[
L_2 = \{a^i b^i \mid 0 \leq i\}.
\]

What are the equivalence classes of \(\equiv_{L_2} \)?

\[\square\]
Another Equivalence Relation

Lemma 3. The relation \equiv_L is an equivalence relation.

Lemma 4. Let M be a DFA. Then every equivalence class of $\equiv_L(M)$ is a union of equivalence classes of \equiv_M.
Example

Another DFA M'_1 that accepts L_1 is given by

\[L_{p_0} = (bb)^* \]
\[L_{p_1} = (bb)^* a \]
\[L_{p_2} = ((bb)^* a a \cup L_{p_6} b) b^* \]
\[L_{p_3} = (L_{p_2} \cup L_{p_6}) a (a \cup b)^* \]
\[L_{p_4} = b(bb)^* \]
\[L_{p_5} = (b(bb)^* a \cup L_{p_1} b) b^* \]
\[L_{p_6} = (b(bb)^* a (bb)^* ab) b^* a \]

Express the equivalence classes of \equiv_{L_1} using the partition ?
Myhill-Nerode Theorem. The following are equivalent for a language L over Σ:

(i) L is regular.

(ii) There is a right-invariant equivalence relation \equiv on Σ^* with a finite number of equivalence classes such that L is the union of some of the equivalence classes of \equiv.

(iii) \equiv_L has a finite number of equivalence classes.
Proof:

(i) \Rightarrow (ii). Choose a DFA $M = (Q, \Sigma, \delta, q_0, F)$ that accepts L. Show that \equiv_M satisfies (ii).

(ii) \Rightarrow (iii). Let \equiv satisfy (ii). Show that $[u]_{\equiv} \subseteq [u]_{\equiv_L}$, for every string $u \in \Sigma^*$. Show that (iii) holds.

(iii) \Rightarrow (i). Build a DFA M_L from \equiv_L.
Examples

Assume $\Sigma = \{0, 1\}$.

$L_3 = \{0^{2^i} | 0 \leq i \}$

$= \{0, 00, 0000, 00000000, \ldots \}$

Equivalence classes of \equiv_{L_3} ?

Apply Myhill-Nerode ?

$L_4 = \{0^{2^i} | 0 \leq i \}$

$= \{\lambda, 00, 0000, 000000, \ldots \}$

Equivalence classes of \equiv_{L_4} ?

What is the corresponding DFA ?
Minimum-State DFA

Theorem 7.7.5. The DFA M_L constructed in the Myhill-Nerode Theorem is the unique (up to relabeling states) minimum-state DFA that accepts L.
Minimization Algorithm

DFA-Minimization(M)

▷ $M = (Q, \Sigma, \delta, q_0, F)$ is a DFA.
▷ Assume that $F \neq Q$ and $F \neq \emptyset$.
▷ P is a partition of Q.
▷ \equiv_P is the corresponding equivalence relation.

$P \leftarrow \{F, Q - F\}$

repeat done \leftarrow true
 for $S \in P$
 do for $q_i, q_j \in S, q_i \neq q_j$
 do for $a \in \Sigma$
 do if $\delta(q_i, a) \neq_P \delta(q_j, a)$
 then done \leftarrow false
 refine S based on a
 until done

return DFA constructed from P
Example*

Apply the state minimization algorithm to this DFA:

* Hopcroft and Ullman, page 68.