Formal Languages

Progression of Concepts

- Symbol
- Alphabet
- String
- Language
Symbols

• Letters or numerals:

 a b c ... z 0 1 2 ... 9

• Bits:

 0 1

• English words:

 fox dog jobs

• Syntactic components of a programming language:

 for begin end while ; :=
Alphabet

An alphabet Σ is a finite set of symbols.

EXAMPLE.

$$\Sigma_1 = \{a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z\}$$

EXAMPLE.

$$\Sigma_2 = \{0, 1\}$$

EXAMPLE.

The set of lexical elements of a programming language (keywords, syntax, identifiers, etc.)
String

A string over Σ is a finite sequence of symbols from Σ.

EXAMPLE.

Strings over Σ_1 are sequences of letters:

- r, a, b, b, i, t
- f, o, x
- e, a, g, l, e

Generally just omit the commas:

- rabbit
- fox
- eagle

EXAMPLE.

Strings over Σ_2 are sequences of binary digits:

$$
\begin{align*}
1110011 \\
10001011101010010010010010101011 \\
01110100010101101101101101101010100
\end{align*}
$$
String Notions

Every string \(v \) has a \textbf{length}, denoted \(\text{length}(v) \), that is the length of the sequence of symbols.

The string with no symbols is the \textbf{null string} or \textbf{empty string}, which has length 0. It is denoted \(\lambda \), \(e \), or \(\epsilon \).

If \(u \) and \(v \) are two strings, then another string results if \(u \) is followed by \(v \). This is the \textbf{concatenation} of \(u \) and \(v \), denoted \(u \cdot v \) or just \(uv \).

The empty string is an identity for the concatenation operation. For every string \(u \),

\[
ul = u = \lambda u.
\]
Other String Notions

String u is a **substring** of v if $v = xuy$ for some strings x and y.

String u is a **prefix** of v if $v = uy$ for some string y.

String u is a **suffix** of v if $v = xu$ for some string x.

String v^R is the **reversal** of v if it is the sequence v in last-to-first order.

If $v = v^R$, then v is a **palindrome**.

EXERCISE.

Apply the definitions to $v = bacb$.

How many palindromes of length 4 are there over $\{a, b, c\}$? Length 5?
Languages

Start with an alphabet Σ.

The set of all strings over Σ is denoted Σ^*.

A language over Σ is any subset of Σ^*.

EXERCISE. What can you say about the number of languages over Σ?
Sample Languages

Example languages over $\Sigma = \{a, b, c\}$:

- \emptyset, the empty language

- $\{aaab, aabb, abab, abbb, aacb, acab, accb, abcb, acbb\}$, the set of strings of length 4 that begin with a and end with b

- $\{u \in \Sigma^* \mid \text{length}(u) \geq 7\}$, the set of all strings of length at least 7
Operations on Languages

- Union: \(L_1 \cup L_2 \)
- Intersection: \(L_1 \cap L_2 \)
- Complementation: \(\overline{L} = \Sigma^* - L \)
- Concatenation:

\[
L_1 L_2 = \{uv \mid u \in L_1, v \in L_2\}
\]

EXAMPLE.

\[
\{b, ba\}\{\lambda, a, ab\} = \{b, ba, bab, baa, baab\}
\]
Powers of Languages

- \(L^0 = \{\lambda\} \)

- For \(i > 0 \),
 \[L^i = L^{i-1}L. \]

EXERCISE.

\[\emptyset^0 = \square ? \]

\[\{a, ba\}^3 = \square ? \]
Kleene Closure

The **Kleene closure** (or **Kleene star**) of a language L is

$$L^* = \bigcup_{i=0}^{\infty} L^i.$$

The **Kleene plus** of a language L is

$$L^+ = \bigcup_{i=1}^{\infty} L^i.$$

Some Facts

$$L^+ = LL^*$$
$$L^+ = L^* - \{\lambda\} \quad \text{if } \lambda \notin L$$
$$L^+ = L^* \quad \text{if } \lambda \in L$$
Exercises

1. \(\emptyset^* = \) ?

2. \(\emptyset^+ = \) ?

3. What language is described by

\[\{a, b\}^* \{cab\}\{b, a\}^* \]

4. Give a recursive definition of \(L^* \).
Regular Languages

Fix an alphabet Σ. The set of **regular languages** or **regular sets** over Σ is defined recursively:

1. **Basis:** The sets \emptyset, $\{\lambda\}$, and $\{a\}$, where $a \in \Sigma$, are regular sets.

2. **Recursive step:** If L_1 and L_2 are regular sets, then

 $L_1 \cup L_2,$
 $L_1L_2,$ and
 L_1^*

 are regular sets.

3. **Closure:** Only sets attainable by a finite number of applications of the recursive step to the basis are regular sets.
Regular Expressions

A regular expression over Σ is defined recursively:

1. **Basis:** The expressions $\emptyset, \lambda,$ and a, where $a \in \Sigma$, are regular expressions representing, respectively, \emptyset, $\{\lambda\}$, and $\{a\}$.

2. **Recursive step:** If u_1 and u_2 are regular expressions representing, respectively, languages L_1 and L_2, then $(u_1 \cup u_2)$, $(u_1 u_2)$, and $(u_1)^*$ are regular expressions representing, respectively, $L_1 \cup L_2$, $L_1 L_2$, and L_1^*.

3. **Closure:** Only expressions attainable by a finite number of applications of the recursive step to the basis are regular expressions.
Examples

An algebraic notation for representing regular languages.

EXAMPLE.

The regular expression

\[(((b \cup (ba)) (\lambda \cup (a \cup (ab)))) \] represents the regular language

\[\{b, ba\} \{\lambda, a, ab\} = \{b, ba, bab, baa, baab\} \]

Precedence: Kleene closure, concatenation, union (highest to lowest). Allows dropping unnecessary parentheses.

EXAMPLE.

The revised regular expression

\[(b \cup ba)(\lambda \cup a \cup ab) \] also represents the regular language

\[\{b, ba\} \{\lambda, a, ab\} \]
Further Examples

Abusing notation, we often write

$$(b \cup ba)(\lambda \cup a \cup ab) = \{b, ba\}\{\lambda, a, ab\}.$$

Fix $\Sigma = \{a, b, c\}$. Then

$$\overline{(a \cup b \cup c)^*} = \Sigma^*.$$

As shorthand, let u^+ represent the same language as uu^*.

Two regular expressions can represent the same language:

$$\Sigma^* = \overline{(a \cup b \cup c)^*} = \overline{(a^*b^*c^*)^*}.$$
Representation Exercises

Problem 12. The set of strings over \(\{a, b, c\} \) in which all the \(a \)'s precede all the \(b \)'s, which in turn precede all the \(c \)'s

Problem 13. The same except excluding the empty string

Problem 21. The set of strings over \(\{a, b\} \) in which the substring \(aa \) occurs exactly once
Regular Expression Identities

Table 2.3.1. Show these identities:

7. \[u \cup u = u \]

10. \[(u \cup v)w = uw \cup vw \]

11. \[(uv)^*u = u(vu)^* \]
Regular Expression Identities

Problem 38 (d). Use the identities in Table 2.3.1 to establish this identity:

\[(a \cup b)^* = (a^* \cup ba^*)^*\.

Answer with explanations:

\[(a \cup b)^* = (a \cup ba^*)^*
\]

12. \[(u \cup v)^* = (u \cup vu^*)^*\]

= \[(a^* \cup ba^*)^*
\]

12. \[(u \cup v)^* = (u^* \cup v)^*\]