Review of Mathematical Prerequisites

- Sets, relations, and functions
- Cardinality — countable and uncountable sets
- Recursive or inductive definitions
- Proof by induction
- Directed graphs
Reading the Text

• Notational conventions in preface

• Defined terms are **boldface**

• Understanding definitions
 – Cyclic and acyclic graphs

• Understanding examples

• Theorems and proofs

• Asking questions
Sets

A **set** is a collection of objects. A set may be described by

- List
- Property
- Operations on other sets
- Construction

The **power set** of X is the set of all subsets of X:

\[\mathcal{P}(X) = \{Y \mid Y \subseteq X\}. \]

This is also written

\[\mathcal{P}(X) = 2^X. \]
Relations

The cartesian product of sets $X_1, X_2, \ldots X_n$ is

$$X_1 \times X_2 \times \cdots \times X_n$$

$$= \{ (x_1, x_2, \ldots x_n) \mid x_1 \in X_1, \quad x_2 \in X_2, \ldots, x_n \in X_n \}.$$

The ordered list $(x_1, x_2, \ldots x_n)$ or $[x_1, x_2, \ldots x_n]$ is an n-tuple.

A relation on $X_1, X_2, \ldots X_n$ is a subset of $X_1 \times X_2 \times \cdots \times X_n$.

- Binary relations

- Ordering relations

- Equivalence relations
Functions

A function $f : X \rightarrow Y$ is a relation on X and Y such that if $x \in X$, $y_1, y_2 \in Y$, and $(x, y_1), (x, y_2) \in f$, then $y_1 = y_2$.

We write $f(x) = y_1$.

If $f(x)$ is defined for all $x \in X$, then f is a total function. (This is what we typically think of as a function.) The default is a total function.

If f is not total, then it is a partial function.

EXAMPLE. What is an example of a partial function?
Cardinality

Number of elements in a set

If there is a one-to-one, onto function $f: \{1, 2, \ldots, n\} \rightarrow X$, then X has cardinality n, written $\text{card}(X) = n$. X is finite.

If Y is not finite, then there is a one-to-one function $g: Y \rightarrow Y$ that is not onto. Y is infinite.

If there is a one-to-one, onto function $f: X \rightarrow Y$, then X and Y have the same cardinality, written $\text{card}(X) = \text{card}(Y)$.

If there is a one-to-one function $f: X \rightarrow Y$, then write $\text{card}(X) \leq \text{card}(Y)$.

Schröder-Bernstein Theorem. If $\text{card}(X) \leq \text{card}(Y)$ and $\text{card}(Y) \leq \text{card}(X)$, then $\text{card}(X) = \text{card}(Y)$.
Countable and Uncountable

A set that has the same cardinality as the natural numbers

\[N = \{0, 1, 2, \ldots, \} \]

is denumerable.

Every infinite subset of \(N \) is denumerable.

\(X \) is countable if it is finite or denumerable.

\(Y \) is uncountable if it not countable.

EXAMPLE. The set of real numbers is uncountable.
Proof of Countability

The cartesian product $\mathbb{N} \times \mathbb{N}$ is countable.

\begin{center}
\begin{tabular}{cccccccc}
 & & & & & & & \\
 & & & & & & & \\
5 & & & & & & & \\
& & & & & & & \\
4 & & & & & & & \\
& & & & & & & \\
3 & & & & & & & \\
& & & & & & & \\
2 & & & & & & & \\
& & & & & & & \\
1 & & & & & & & \\
& & & & & & & \\
0 & & & & & & & \\
& & & & & & & \\
0 & 1 & 2 & 3 & 4 & 5 & \\
& & & & & & \\
\end{tabular}
\end{center}

Technique: Construct a one-to-one, onto function $f : \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$.

More generally, the cartesian product of a finite number of countable sets is countable.
Other Countable Sets

Theorem 1.4.4 (iii). The set of finite subsets of a countable set is countable.

Similar result. Suppose Σ is a finite alphabet (e.g., ASCII). Let Σ^* be the set of all finite strings of characters from Σ. Then Σ^* is countable.
Proof of Uncountability

The set of functions

\[N^N = \{ f : N \to N \} \]

is uncountable.

Technique. Proof by Diagonalization:

- Assume \(\text{card}(N) = \text{card}(N^N) \).

- Let \(g : N \to N^N \) be a one-to-one, onto function.

- Construct a function \(f \) that is not in the range of \(g \).

- This is a contradiction. Conclude that \(\text{card}(N) \neq \text{card}(N^N) \).
Using Diagonalization

Corollary. There are more functions than there are programs to compute them.

APPLICATION. Prove that, for any set X,

$$\text{card}(X) < \text{card}(\mathcal{P}(X)).$$
Recursive Definitions

• Method used to define a set X

• Explains how to *generate* an element of X

• Especially useful if X is infinite

• Also called *inductive definitions*
Form of a Recursive Definition

Three components:

1. **Basis:** A finite set X_0 of “basic” elements of X.

2. **Recursive (or inductive) step:** Operations that can be used to construct new elements of X from known elements of X.

3. **Closure (disclaimer):** The only elements of X are those in X_0 and those that can be gotten from X_0 by a finite number of applications of the operations in component 2.
Example of a Recursive Definition

Define

\[Y = \{3n \mid n \in \mathbb{N}\} \]

recursively.

1. **Basis:** The minimum basis set consists of 0:

\[Y_0 = \{0\}. \]

2. **Recursive step:** If \(y \in Y \), then \(y + 3 \in Y \).

3. **Closure:** The only elements of \(Y \) are those in \(Y_0 \) and those that can be gotten from \(Y_0 \) by a finite number of applications of the recursive step.
Another Example

First Definition of a Tree. An undirected tree is an undirected graph that is connected and that contains no cycle.

Second Definition of a Tree. The set Z of undirected trees is defined recursively by

1. **Basis:** The basis set Z_0 consists of every undirected graph having a single vertex and no edges.

2. **Recursive step:** If T is a tree, then the addition of a new vertex v and an edge from v to any vertex of T results in a tree.

3. **Closure:** The only elements of Z are those in Z_0 and those that can be gotten from Z_0 by a finite number of applications of the recursive step.
Nested Sequence of Sets

For each $i \in \mathbb{N}$, define X_i to be the set of elements that can be gotten from X_0 by i or fewer applications of the recursive step.

Then, for $i > 0$,

$$X_i = X_{i-1} \cup \{x \mid x \text{ can be obtained from elements in } X_{i-1} \text{ by one application of the recursive step}\}.$$

Clearly,

$$X_0 \subset X_1 \subset X_2 \subset \cdots \subset X_{i-1} \subset X_i \subset \cdots$$

and

$$X = \bigcup_{i=0}^{\infty} X_i.$$

EXERCISE. What are the nested sequences for each of the previous two examples?
Proof by Induction

Prove a property P of the elements of a set X that is defined recursively.

An **inductive argument** is structured as follows:

1. **Basis:** Prove P for all $x \in X_0$.

2. **Inductive hypothesis:** Assume that P is true for all x in X_0, X_1, \ldots, X_i, where $i \geq 0$.

3. **Inductive step:** Prove that the inductive hypothesis implies that P holds for all $x \in X_{i+1}$.

By the Principle of Mathematical Induction, P holds for all $x \in X$.

CS 4114 Lecture Notes
Example of Inductive Proof

Show that the two definitions of Y given on slide 14 are equivalent.
Another Example

Show that the two definitions of \mathbb{Z} given on slide 15 are equivalent.
Directed Graphs

A directed graph $G = (V, A)$ consists of a set of nodes V and a set of arcs (or edges) $A \subset V \times V$.

So a directed graph is just a binary relation on V.

EXAMPLE. The graph

$$G = (\{a, b, c\},$$

$$\{(a, a), (b, c), (b, a), (a, c), (c, a)\})$$

might be drawn as follows:

![Directed Graph Diagram](image-url)
Common Graph Terminology

- Indegree and outdegree
- Path
- Cycle
- Acyclic
Ordered Trees

A directed tree \(T = (V, A) \) is a directed graph having a unique node \(r \) such that every node is reached from \(r \) by a unique path.

Every node either has one or more children or is a leaf.

\(T \) is an ordered tree if the children of each internal node (non-leaf) are given a fixed order.

EXAMPLE.

![Diagram of an ordered tree](image-url)
Concluding Exercise

EXERCISE. Give a recursive definition of an ordered tree.