CS 4114
Final Exam

Given: May 9, 2000, 10:05–12:05

Name:

Signature:

Instructions

1. Before you start answering questions, fill in your name above. Before you turn in your exam, sign above testifying that you have neither given nor received aid on this exam. **Unsigned exams will not be accepted!**

2. The exam consists of three problems worth a total of 250 points.

3. Put your answers in the space provided on the exam sheets.

4. You may consult the textbooks, your notes, or the handouts.

5. Each solution must include an explanation of how the given solution was obtained or why it is correct. An answer, correct or incorrect, without an explanation is worth no credit.

Good luck!
[80] 1. Let L_1 be the language

$$L_1 = b^+a^*\{a^ib^i \mid i \geq 9\}(ab)^+.$$

Determine which of the following is true:

1. L_1 is regular;
2. L_1 is context-free, but not regular; or
3. L_1 is not context-free, but is r.e.

Prove your answer.

Space for your solution to Problem 1:
More space for your solution to Problem 1:
Yet more space for your solution to Problem 1:
[90] 2. Let G_2 be the context-free grammar:

\[
S = ABA## | aaba## \\
A \rightarrow aBa | bA \\
B \rightarrow bBB | ba
\]

and let L_2 be the language generated by G_2.

1. Give a PDA that parses strings generated by G_2.

2. Prove that G_2 is not a strong LL$_1$ grammar.

3. Is G_2 strong LL$_2$? Justify your answer.

Space for your solution to Problem 2:
More space for your solution to Problem 2:
Yet more space for your solution to Problem 2:
[80] 3. Let M_3 be the Turing machine with input alphabet $\Sigma_3 = \{0, 1\}$ and state diagram

1. What language L_h does M_3 accept by halting?
2. What language L_f does M_3 accept by final state?
3. Determine whether L_h is context-free.
4. Determine whether L_f is context-free.

Space for your solution to Problem 3:
More space for your solution to Problem 3:
Yet more space for your solution to Problem 3;