CS 3204
Operating Systems

Lecture 1
Godmar Back

High-level Objectives

• Learn how an OS works
 – OS are essential to everything we do with computers

• Get an inside view
 – Look at design & implementation

• Learn by doing
 – You’ll code a substantial part of an actual OS

About Me

• Undergraduate Work at Humboldt and Technical University Berlin
• PhD University of Utah
• Postdoctoral Work at Stanford University
• Joined Virginia Tech as Assistant Professor August 2004
• Research Interests:
 – Operating systems, runtime systems and compilers: focus on building reliable systems.

Course Facts

• Meet Monday/Wednesday/Friday 10:10am-11:00am Pamplin 31
• Check website regularly
 – http://courses.cs.vt.edu/~cs3204/spring2006/gback
• Send class-related email to
 – cs3204-staff@cs.vt.edu
• Use CS Forum for projects
• TA: Vijay Kumar for this section

Email Etiquette

• Please enter your name in webmail so it appears in From: line
• Be coherent

Reading Material

• Required Textbook
 – Will post reading assignments:
 • Chapter 2.1-2.4 for this week
Class Format

- Lectures
- Exams
 - 1 Midterm
 - 1 Final (Comprehensive)
- Programming Projects

Prerequisites

- Willingness to master an intellectually challenging subject
- Knowledge of computer organization (ECE 2504)
 - Addresses, Registers, Basic Assembly Language, Memory Organization
- Knowledge of algorithms & data structures (CS 2604)
 - Solid knowledge of linked lists, hash tables, etc.
- Solid knowledge of C

Talking about C...

```
#define offsetof(TYPE, MEMBER) 
((size_t) &((TYPE *) 0)->MEMBER)

struct point {
    int x;
    int y;
    int z;
    char c;
    float o;
};

Q.: What is offsetof(struct point, y)?
    offsetof(struct point, o)?
```

```
0: x (4 byte int)
8: z (4 byte int)
12: c (1 byte char)
16: o (4 byte float)
13: 3 byte padding
```

Programming Projects

- 5 Projects: 0, 1, 2, 3, and 4.
- Project 0 is warm-up
- Projects 1-4 will use the Pintos operating system developed at Stanford.
- Project dependency graph
- Projects are different in five ways

Project Difference #1

- The Pintos projects are hard
- Expect a challenge
- About 2,500 lines of code (over the entire semester) to write
- We will help:
 - Provide tools, answer questions
 - Although Pintos is a true OS, we run it in a simulator (Bochs) → Reproducibility!
- Ask lots of questions!

Project Difference #2

- The projects are group projects
- Working in a group more closely resembles what you do outside of academia
 - Can design together, code together
 - Learn group collaboration tools (CVS version control system)
- Group members must contribute equally
Project Difference #3

- Read before you code
- We can’t build an OS from scratch in a semester
 - Start with very primitive baseline code
- You must read a substantial amount of (well-written, well-documented) code before starting the projects
 - All of Pintos is about 7,000 lines
 - Must intimately understand probably 500-1000 lines, will be introduced gradually
 - Welcome to read all nitty-gritty details

Project Difference #4

- Only 50% of your grade comes from test cases
 - All test cases are public
- 50% is given for design & documentation
 - Requires design documents
 - Explain your design rationale
 - Create maintainable code, of “peer review” quality
 - Will grade on code quality

Project Difference #5

- We use C, not C++
- Note: C is a subset of C++
- Don’t have virtual methods, don’t have templates, don’t have rtti
- Still use object-orientation, still use encapsulation
- Most OS are written in C, not C++.

Late Policy

- No late submissions will be accepted.
- Instead, you have 4 late days:
 - Self-granted extensions, no need to ask for permission
- Contact instructor in extraordinary circumstances only
 - Job interviews do not count

Grading

- 15% Midterm
- 30% Final
- 55% Projects
- These may be subject to change
- Not grading on a standard scale:
 - Median will divide B- and B.
- Additional stipulation:
 - Must pass all tests of Project 2

Honor Code

- Will be strictly enforced in this class
- Do not cheat
 - Observe collaboration policy outlined in syllabus
- Will use MOSS for software cheating detection
 - Do not borrow code from other offerings
 - Follow collaboration policy
- Read all policies posted on the website
 - “I was not aware…” is no excuse
- If in doubt, ask!
Acknowledgements

• Will draw in lectures from
 – Stallings’s book
 – And other texts, in particular Silberschatz, Galvin, Gagne’s: Operating Systems Concepts (Dinosaur book) & Tannenbaum’s Modern Operating Systems
 – Course material created in other courses using Pintos
 • E.g., CS140 @ Stanford, CS 326 @ U San Francisco
 – Course material created by McQuain & other VT instructors
 – And other sources