Chapter 1

Introduction
What is an Operating System (OS)?

- **Definition 1:**
 - An OS is the *interface* between the hardware and the software environment.

- **Definition 2:**
 - An OS is a *resource manager* – provides “resource abstraction”

- In fact, it achieves 1 and 2.
- Therefore, both definitions are applicable at some times.
System Software and the OS interface

Your software

Editors
Compilers
Loaders

from the textbook
How does the OS “manage resources”?
- By providing *Resource Abstraction* to the other system software and applications

What is Abstraction?
- Abstraction hides the details

Resource Abstraction
- hides the “nitty-gritty” details of the underlying resource
Resource Abstraction ... an example

(Consider the C language statement `fprintf`)

```c
fprintf ( fileId, "%d", var1 )
```

write (block, 100, device, 266, 9)

```c
load ( block, 100, device )
seek ( device, 266 )
out (device, 9 )
```
Resource Abstraction

- Typical resource abstractions
 - Memory
 - Disk
 - Keyboard
 - Monitor
Resource Sharing

- Managing resources through abstractions implies the ability to ‘share resources’

- Types of Sharing:
 - Space Multiplexed
 - Divided into 2 or more distinct units of resource
 - Example: disk, memory
 - Time multiplexed
 - Exclusive control for a short period of time
 - Example: processor
Resource Sharing

- Multiple processes accessing *same* resource concurrently

- Isolation: only one processor has access at any given time
Terminology

Concurrency
- The simultaneous execution of different programs

Types of Concurrency
- **Physical** – multiple processors
 - Example: CPU, I/O
- **Logical** – interleaved execution
 - Example: processes

Problems:
- Simultaneous access to memory
- Lost updates

Multiprogramming
- The concurrent execution of multiple programs on a single processor
- Could be space-multiplexed into memory and time-multiplexed in processors
OS Strategies for Providing Services

- Batch
- Time share
- PCs and Workstations
- Process Control & Real-time systems
- Networked
Batch processing systems

- Sequentially loaded set of jobs
- Supported multiprogramming
- Jobs compete for Resources
 - 1st: memory
 - 2nd: processor
 - 3rd: ???
- No “real time” interaction between user and computer
Time share (1970s)

- Multiprogramming environment
- Multiple interactive users

Why time-share (TS)?
- To spread the cost of large machine
- To fully utilize computing power

- TS provides each user with his/her own Virtual Machine
A Timesharing System

Terminal Multiplexor

VM VM ... VM

Timesharing OS

from the textbook
Time share… ctd.

- TS eventually supported multitasking
 - Multitasking:
 - A time share system that support multiple processes per user, where.
 - A process is a “program in execution

- TS elevated the importance of
 - Need for barriers and safeguards among users and there processes - User/User & Process/Process
 - Memory protection
 - File Protection
Personal Computers (PCs) & Workstations

- Originally
 - Single User
 - Single Processor

- Now
 - Single or Multiple Users
 - Multiprogrammed
Earlier machines
- Too large, too expensive, and too fast for one person

Mini-computers
- Smaller versions (like DEC PDP), yet they too grew in size

Micro-computer
- Single chip processor

Workstation
- Multiple user
- Multiprogrammed
- Multitasking
PCs & Workstations… Contribution

- Contributed to the growth of

 - Networking
 - Email
 - File server

 - Point and click interface
 - Like that in Mac and Windows
Process Control & Real time Systems

- Process Control Systems (PCS)
 - Single application monitoring one process
 - Example: System to monitor the heat of a liquid

- Real Time Systems (RTS)
 - Tied together Process Control Systems
Real Time Systems... type

- **Hard RTS**
 - Had timing constraints that COULD NOT be missed
 - Example: Chemical processes, Nuclear power plants, Defense systems

- **Soft RTS**
 - Make best effort to accommodate time constraints
 - Example: Transaction processing (ATM)

RTS: Tradeoff of generality of operations/functionality to ensure that deadlines can be made
Networks of Computers

- Problem is too large
 - Partition it among machines

- Communication exchange
 - Email
 - File transfers

- Servers
 - File
 - Printer
 - Database

- Provide access to non-local resources
 - LAN, WAN
 - Client / Server
The Evolution of Modern Operating Systems

- Timesharing Systems
- Network Systems
- Personal Computer and Workstation Systems
- Real-time Systems
- Contemporary Operating System

- Memory Mgmt.
- Scheduling
- Protection
- Files
- Devices
- System software
- Human-computer Interface
- Client-server Model Protocols
- Scheduling

from the textbook