Chapter 1

Introduction
What is an Operating System (OS) ?

- Definition 1:
 - An OS is the interface between the hardware and the software environment

- Definition 2:
 - An OS is a resource manager - provides “resource abstraction”

- In fact, it achieves 1 through 2.
- Therefore, both definitions are applicable at some times.
System Software and the OS Interface

- Application Software
- Application Programming Interface
- Other System Software
- Operating System Interface
- Operating System
- Software-Hardware Interface
- Hardware

Drivers

Resource Abstraction

Resource Sharing

Your software

Editors

Compile

Loaders

from the te
Resource Abstraction

- How does the OS “manage resources”?
 - By providing Resource Abstraction to the other system software and applications
- What is Abstraction?
 - Abstraction hides the details

- Resource Abstraction
 - hides the “nitty-gritty” details of the underlying resource
Resource Abstraction ... an example

(Consider the C language statement `fprintf`)

```c
fprintf ( fileId , "%d" , var1 )
```
Resource Abstraction

- Typical resource abstractions
 - Memory
 - Disk
 - Keyboard
 - Monitor
Resource Sharing

Managing resources through abstractions implies the ability to ‘share resources’

Types of Sharing:

- Space Multiplexed
 - Divided into 2 or more distinct units of resource
 - Example: disk, memory

- Time multiplexed
 - Exclusive control for a short period of time
 - Example: processor
Resource Sharing

- Multiple processes accessing same resource concurrently
- Isolation: only one processor has access at any given time
Terminology

Concurrency

- The simultaneous execution of different programs

Types of Concurrency

- **Physical** - multiple processors
 - Example: CPU, I/O

- **Logical** - interleaved execution
 - Example: processes

Problems:

- Simultaneous access to memory
- Lost updates

Multiprogramming

- The concurrent execution of multiple programs on a single processor
- Could be space-multiplexed into memory and time-multiplexed in processors
OS Strategies for Providing Services

- Batch
- Time share
- PCs and Workstations
- Process Control & Real-time systems
- Networked
Batch processing systems

- Sequentially loaded set of jobs
- Supported multiprogramming
- Jobs compete for Resources
 - 1st: memory
 - 2nd: processor
 - 3rd: ???
- No “real time” interaction between user and computer
Time share (1970s)

- Multiprogramming environment
- Multiple interactive users

Why time-share (TS)?
- To spread the cost of large machine
- To fully utilize computing power

TS provides each user with his/her own Virtual Machine
Time share system...

A Timesharing System

Terminal Multiplexor

VM VM ... VM

Timesharing OS

CS 3204 - Arthur
TS eventually supported multitasking

Multitasking:
- A time share system that supports multiple processes per user.
- A process is a “program in execution”

TS elevated the importance of

Need for barriers and safeguards among users and their processes - User/User & Process/Process
- Memory protection
- File Protection
Personal Computers (PCs) & Workstat

- Originally
 - Single User
 - Single Processor

- Now
 - Single or Multiple Users
 - Multiprogrammed
Evolving from earlier machines, workstations became more accessible and efficient. Initially, machines were too large, too expensive, and too fast for a single person. Mini-computers offered smaller versions (like DEC PDP), but they still grew in size. The micro-computer introduced single-chip processors, and the workstation became a multi-user, multiprogrammed, and multitasking environment.
PCs & Workstations... Contribution

Contributed to the growth of

- Networking
 - Email
 - File server

- Point and click interface
 - Like that in Mac and Windows
Process Control & Real time Systems

- Process Control Systems (PCS)
 - Single application monitoring one process
 - Example: System to monitor the heat of a liquid

- Real Time Systems (RTS)
 - Tied together Process Control Systems
Real Time Systems... type

- **Hard RTS**
 - Had timing constraints that COULD NOT be missed
 - Example: Chemical processes, Nuclear power plants, Defense systems

- **Soft RTS**
 - Make best effort to accommodate time constraints
 - Example: Transaction processing (ATM)

RTS: Tradeoff of generality of operations/functionality to ensure that deadlines can be made
Networks of Computers

- Problem is too large
 - Partition it among machines

- Communication exchange
 - Email
 - File transfers

- Servers
 - File
 - Printer
 - Database

- Provide access to non-local resources
 - LAN, WAN
 - Client / Server
The Evolution of Modern Operating Systems

Timesharing Systems

Network Systems

Personal Computer and Workstation Systems

Real-time Systems

Batch Multiprogramming Systems

Memory Mgmt.
Protection
Scheduling
Files
Devices

Memory Mgmt.
Scheduling
Protection

System Software
Human-Computer Interface

Client-server Model
Protocols

Scheduling

Contemporary Operating System